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ABSTRACT

Given the high multi-disciplinarity of Molecular Communi-
cations (MolCom), researchers often face significant difficul-
ties to understand each other. This impairment not only
affect researchers with different backgrounds, but it also af-
fects the different software tools. This paper motivates the
development of the Molecular Communication Markup Lan-
guage (MolComML). MolComML is proposed as an XML-
based format to represent the considered elements, interac-
tions, configuration and results of the experiments and simu-
lations in the field of MolCom. MolComML is designed with
the objective of converging all fields of research within Mol-
Com to help the exchange of information. We overview its
main functionality and define its basic composing elements.

Categories and Subject Descriptors

1.6.3 [Simulation and Modeling]: Simulation Languages
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1. INTRODUCTION

Molecular Communication (MolCom) is a disruptive field
of research that has been rapidly growing in the recent years
[3]. Given its high multidisciplinary, bridging the disparate
islands of knowledge stems as a pending challenge.

This issue does not only appear in the communication
among researchers, but it also interferes with the interaction
between software and simulation tools, thus imparing repro-
ducibility of the research outcomes. As an example, consider
the existing simulation tools, which have been used to sim-
ulate diffusion-based channels. Among others, BiNS [10],
N3Sim [16] or Ns-3-based [5] utilize different configuration
and output files, making cross-validation and reproducibil-
ity often unfeasible, especially for complex communication
architectures [11, 7).
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Figure 1: Top-bottom comparison between a com-
puter network and a biological system.

This paper introduces the MolCom Markup Language (Mol-
ComML) as an XML-based language that promises to re-
unite both numerical analysis and experimental synthesis by
ensuring a flexible markup language [1]. The development of
such tool will allow cross-validation of experiments with the
theoretical results, as well as to reduce significant researcher
time in interfacing different software tools. As sketched in
Fig. 1, the target of this activity can be compared with that
of XML-based languages, which allow specifying network
configuration in an unified way (e.g. NETCONF [9]).

We present the main objectives, elements and functions of
the proposed language, as well as its structure. The defini-
tion of the MolComML is guided through a simple example,
which aids the overall understanding of the language.

The structure of this paper is as follows: Section 2 overviews
the background and the related work. Section 3 defines the
molecular communication markup language and overviews
its properties, elements, and functionality. Finally, Section 4
concludes our work.

2. BACKGROUND AND RELATED WORK

In this section, we overview existing specification languages
for other disciplines, as well as existing simulators and ex-
perimental test-beds.



2.1 Molecular Communication Standard

The model defined by the IEEE 1906.1 Working Group [5]
stands as the first nanoscale and molecular communication
standard and constitutes a recommended practice for the
definition of a general framework for the nanoscale commu-
nications. This standard proposes an architecture based on
the following blocks: NetDevice, Communication Interface,
Medium, Motion, Field, Specificity, and Perturbation.

2.2 Specification languages

As for mark-up languages used in biology, one of the most
important related language is SBML [15], that is nowadays
the standard for representing computational models in sys-
tem biology. It allows the communication and storing of
computational models of biological processes and its success
is due to the possibility to represent different classes of bio-
logical phenomena, such as cell signaling pathways, regula-
tory networks, and many others. Its main purpose is to ease
the model sharing among different software environments.

The CellML language is an open standard based on the
XML markup language [8]. The purpose of CellML is to
store and exchange computer-based mathematical models.
CellML allows scientists to share models even when they
use different model-building software. It also enables them
to reuse components from one model to another one, thus
accelerating model building. CellML includes information
about model structure, mathematics and metadata.

NeuroML is an XML-based model description language,
which provides a powerful common data format for defining
and exchanging models of neurons and neuronal networks
[19]. The structure and behavior of ion channel, synapse,
cell, and network model descriptions are based on under-
lying definitions provided in LEMS, a domain-independent
language for expressing hierarchical mathematical models of
physical entities. It includes two Application Programming
Interfaces (APIs) written in Python to simplify the process
of developing and modifying models expressed in NeuroML
and LEMS.

2.3 MolCom Simulators and Experimentation

In this section, we list some of the main simulators that
have been developed to characterize the broad set of Mol-
Com systems:

e BiNS - Biological and Nano-Scale communica-
tion simulator is a simulation multi-threaded pack-
age for MolCom systems developed at the University
of Perugia [10]. Its customizable design provides a set
of tools for creating objects and for modeling the be-
havior of biological entities, including the collision han-
dling and the modeling of diffusion-drift propagation
into both constrained and open space environments.

e N3Sim is a simulation framework for diffusion-based
molecular communications, which allows the evalua-
tion of molecular networks with several transmitters
and receivers [16]. The diffusion of particles through
the medium is modeled as Brownian motion, taking
into account particle inertia and collisions among par-
ticles. It implements a three-layer architecture, which
are the user interface layer, the data layer and the do-
main layer. The simulation parameters are determined
by means of a text configuration file.

¢ COMSOL Multiphysics is a commercial multipur-
pose platform designed for simulating physics-based
problems through a unified workflow for electrical, me-
chanical, fluid, and chemical applications [6]. It im-
plements finite element analysis, for different physics
and engineering applications. An example of the use of
COMSOL Multiphysics for simulating a MolCom drug
delivery system is presented in [6].

e NS-2 and NS-3 Based Simulators: NS-2 and NS-3
are discrete-event network simulators, which were not
originally developed for MolCom. These simulators are
organized in different software libraries that can work
together. Its flexible structure has allowed implement-
ing some basic elements of MolCom. Among others,
NanoNS[14] is an NS-2 based simulator for diffusive
molecular communication in aqueous mediums, with
constant thermal motion of molecules. In addition, a
NS-3 based a simulation tool has been developed in
the framework of the IEEE P1906.1 working group [5].
User programs can be written in C++ or Python pro-
gramming languages.

e BNSim is a multithread java simulator for bacteria
networks [21]. These networks interconnect engineered
bacteria that communicate at nanoscales. BNSim in-
tegrates three simulation methods: (i) the Gillespie
stochastic simulation algorithm; (ii) stochastic differ-
ential equations, used to model large-scale chemical
system with a controlled level of approximation; (iii) a
hybrid algorithm which integrates the above methods.

e NCSim - Bacteria Nanonetworks is a compre-
hensive simulation framework for molecular commu-
nications, utilizing flagellated bacteria for information
delivery [4]. Its major focus is on different message
encoding techniques. It can simulate several simul-
taneous links between the nanomachines. NCSim in-
corporates the stochastic model for bacteria mobility,
and the plasmid/chromosome transfer between bacte-
ria through the conjugation process. NCSim consists
of three modules: (i) physical (PHY) layer of bacte-
rial nanonetworks; (ii) scenarios generator and simula-
tion monitor; and (iii) plotting tool, intended to post-
process raw simulation data and to generate plots.

e HLA Simulator. In [2], the authors introduce a sim-
ulator design focusing on scalability, and adopting the
high level architecture (HLA) model, which is stan-
dardized under IEEE 1516. It is used to design a
distributed simulation tool for molecular communica-
tions, so that different scalability options can be used
to include additional processing power to reduce the
execution time. This model allows designing large sys-
tems, which could be difficult to do otherwise.

As for experimentation, significant examples for molecu-
lar communications are those illustrated in [12, 18]. In the
former, real in-vitro communications between platelets and
endothelial cells by means of CD40L molecules are tested.
In the latter, the authors have combined cells with nan-
otechnology for an integrated molecular processing network.
Specifically, engineered cell populations are triggered by a
quorum sensing signal molecule to express surface-displayed
fusions consisting of a fluorescent marker and an affinity



peptide. The latter provides means for attaching magnetic
nanoparticles in order to fluorescently activate subpopula-
tions for coalescence into colour-indexed output. The re-
sultant nano-guided cell network assesses quorum sensing
activity and conveys molecular information as a ’bio-litmus’
in a manner read by simple optical means.

3. MOLCOMML

A new MolCom Markup Language (MolComML) is neces-
sary for bridging the areas of interest for molecular commu-
nications. Accordingly, this needs to be flexible and generic,
such that it can be understood by any software and simula-
tion platforms for molecular communications. It also needs
to be capable of providing a large level of detail by provid-
ing all governing equations, parameter values and necessary
conditions, such that it can entirely describe a MolCom en-
vironment in either a simulation or experimental test-bed.

In addition, due to the large growing rate of MolCom-
related research and its high multi-disciplinarity, MolComML
needs to be easily extensible to integrate the most recent and
on-going advancements, compatible with existing languages
of neighboring disciplines (e.g., SBML [15] for systems biol-
ogy and NeuroML [19] for neurology). Finally, MolComML
should be compliant with the IEEE P1906.1 recommended
practice for nanoscale and molecular communication.

Its basic structure consists of several blocks reflecting the
main components of a general molecular communication case.
Each block is composed of a set of required parameters and
a set of custom parameters that could be defined each time
according to the molecular communication needs.

3.1 Objectives

The main objectives of the MolComML format are listed
in what follows:

e Represent the many different classes of molecular com-
munication scenarios, in all levels of abstraction.

e Enable the use of multiple software tools without hav-
ing to rewrite models to conform to different file for-
mats.

e Ensure the survival of models beyond the lifetime of
the software used to create them.

e Use a single language both to analyze the considered
scenarios through software tools, as well as to syn-
thesize actual experiments. This ensures repeatability
and cross-validation.

e Enable models to be shared and published in a form
that any researcher can use even by making use of
different software environments.

e Enable future expandability of the markup language.
Due to the rapid knowledge growth in this field, this
language needs to be constantly updated. MolComML
will be versioned to structure the integration of novel
definitions and models.

3.2 Elements and Functionality

This section overviews the composing elements of Mol-
ComML, as well as their basic functionality. Fig. 3 illus-
trates the general UML diagram showing the interconnec-
tions and dependencies among different blocks. The differ-

ent units and blocks are defined according to the specifica-
tions of MolComML. As shown, the network elements stand
as the central element of the diagram.

3.2.1 Network Elements

Network elements are considered as the building blocks
for users. They are created and interconnected to define the
simulation or experimental set-up. Each element may be
defined by different levels of abstraction. For instance, it
can be an entirely conceptual entity; it can have some real
physical interpretation, or both. Each network element has
a set of standard attributes that could be extended by the
introduction of custom ones. The most important attributes
describe the shape and size of the element, its mass and
time to live properties, the accepted and transmitted signals
and, finally, the motion rules, if such element is equipped by
autonomous propulsion system.

The main network elements are as follows:

e Transmitter: These elements are in charge of encoding
information in the form of a molecular communica-
tion. They need to include all the relevant parame-
ters. Among others, rate of creation of molecules, rate
of emission, and the molecule release mechanism.

e Receiver: These elements are in charge of decoding the
information by detecting the induced fluctuations in
the molecular channel. They need to consider multiple
configurations and types of receivers, such as absorbing
receiver and receiver with absorbing receptors

e Signal: The transmitted signal carries the information
towards the receiver. This can be based on DNA, pro-
teins, ions, and others.

Derivations of these elements, as well as other elements
(active or passive) in the communication channel that may
affect the communication can also be part of this list.

3.2.2 Communication Interface

Network Elements can be connected with other elements
by using the Communication Interface element, that de-
scribes the external interfaces of each network element. Such
interfaces have several properties that describe also the type
of transmitted and received signals, their affinity and the
direction of communication. Again, a subset of custom pa-
rameters can be defined in order to describe more in details
the properties of each interface, as described in what follows.

3.2.3 Properties and parameters

Defining a list of custom attributes and properties is a key
aspect to define the studied problem. These are identified by
the <param> tag. This approach allows a high customiza-
tion capability, extending the predefined attributes or intro-
ducing completely new ones. The format is quite simple, one
has just to define a set of new attributes after the <param>
tag. This approach allows specifying both properties and
attributes of each element described in the MolComML file.

3.2.4 Compartment Elements

The compartments are intended as a kind of well-stirred
container of a particular type and finite size where species
(e.g. chemical substances) may be located. A model may
contain multiple compartments even of the same compart-
ment type, and they can also be located inside each another,



hierarchically. Connections between different compartments
are handled by Gates, that define the rules for crossing. Note
that each network element in a model must be located within
a compartment.

3.2.5 Gates

It is possible to define a list of Interconnection gates be-
tween a couple of adjacent compartments. Each gate is iden-
tified by a unique name, a position, size, shape and orienta-
tion, in order to create a sort of passing hole on the surface
of both compartments.

3.2.6 Interaction Rules

A set of rules need to be defined. They restrict or specify
the operation of the network elements and their connections.
The collision behavior is a typical example: upon impact,
molecules can join, merge, or absorb one another or they can
bounce away from each other. Each rule could be a global
rule valid everywhere or it could be more specific, describing
only a part of the communication environment or being only
valid for a subset of network elements. In general, rules are
described by mathematical expressions imported from an
external model (e.g. MathML [20]). It is also possible to
initialize constants and variables of the imported equations.

3.2.7 Communication Channels

The transmitted signals are transferred to receivers through
communication channels. There exist several channel types.
Junction-based, diffusion, and diffusion-with-drift are ex-
amples of existing channel types. A channel element has
to be defined and connected to each compartment placed
in the communication environment. This ensures the de-
scription, with a high degree of accuracy, of the local en-
vironmental conditions, by means of specific mathematical
rules defined in one or more external MathML files. It is
also possible to initialize a set of the parameters used in
the imported equations. Each channel definition could be
shared between two or more Compartments. The associ-
ation channel-compartment is defined in the compartment
section.

3.2.8 Network Topology

Each Network Element described in section 3.2.1 defines
only the main properties of such element. The Network
Topology section is used to place the required elements in
the proper Compartment. The Topology of the molecular
communication network is described by defining the position
and orientation of each element and also the communication
protocol at the basis of the end-to-end communication. The
initialization of any node parameters are declared here.

3.2.9 Protocol Stack

Taking inspiration from a previous work [17], this section
defines the protocol stack that could be used for the com-
munication needs. It is possible to define any number of
protocol stacks and each one could have a custom structure
composed of different depth and identification name. Each
layer could map the well known protocol stacks of the tra-
ditional telecommunication field or define completely new
layers. The layers are defined by a set of rule and each one
is composed of two signals, the first is for the forward com-
munication and the last is for the backward communication.
For each signal, the type of carrier that will be transmitted
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Figure 2: Graphical description of the MolComML
to illustrate the framework in [13].

(defined previously in the Network Elements section) and
the modulation type are defined. It also allows the defini-
tion of a set of custom parameters in the standard format of
<param name="" value="" and unit="" /> in order to ini-
tialize all the required parameters for that layer. As shown
in Fig. 4, in the Link layer the format of the transmitted
messages is specified, along with the algorithms that man-
age the communication, such as the synchronization and the
rate control algorithms for each signal type defined above.

3.2.10 Event Scheduler

The Event Scheduler tag allows the definition of both the
initial state for each Network Element and specific events
that cause a state transition on a target node, upon the
occurrence of an event or at scheduled times.

3.2.11 Unit Definition

Each numerical attribute defined in the MolComML files
is associated with a unit of measure declared between the
listOfUnits tags. It is possible to define the most common
units, and their multiples, in the International System. The
definition of custom units is based on the combination of the
previous ones, by setting their values, scales and exponents
through this format: customUnit = (valuex10 *°®¢) cmpenent
inside the <listOfUnitDefinitions> tags. The name chosen
for each custom unit can be used in the other sections of
the file, i.e. for the definition of the numerical value of the
considered attribute.

3.2.12 External Sources

MolCom systems is expected to interact with elements
modeled in neighboring disciplines. In order to allow in-
teroperability, it is necessary to translate the configuration
parameters and results from the other languages, such as
SBML or SBOL, providing a flexible adaptation layer that
will help integrating and extending the usability of Mol-
ComML. For this reason, in the MolComML files it is possi-
ble to define the elements to be imported from each external
source. For each one, the list of imported elements is defined
by specifying the coupling between the original name in the
external source with the name used in the MolComML file.
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Figure 3: General UML diagram of MolComML elements.

For each pairing, also the importing rule is specified; it could
be either a comprehensive or a partial import. For the lat-
ter case, it is necessary to define each parameter that has to
been imported, by specifying its identification name on the
external source.

3.2.13  Output

The output data format is fixed for all simulations and
numerical results. The defined output scheme allows it to
specify which elements have to be exported. In more de-
tail, it is possible to define the list of Network Elements,
of the Compartments and of their attributes, by specifying
also the time interval for their monitoring. The definition of
the monitored attributes is completely custom, so you can
define a rule for each attribute of interest, through the well
known rule <param> tag, introduced above. If the software
performs additional post-processing steps applied on the raw
numerical results of simulation steps, these have to be de-
scribed in detail. This includes the identification of data to
process, the order in which changes were applied, and also
the nature of changes.

4. CASE EXAMPLE

We utilize MolComML as a basis to describe the frame-
work presented in [13]. This consists on a point-to-point
communication link between a Platelet and a T-Cell, us-
ing CD40L as communication molecules. This is illustrated
in Fig. 2. In order to be able to use a MolComML file,
each compliant simulator needs a parser module, able to
extract the information form MolComML and translate it
into its specific configuration file. A further step is to de-
sign an input module, able to read directly the information
contained in the MolComML file. We are implementing this
input module in BiNS2 [10] as proof-of-concept; the relevant

source code will be available on the simulator web site and
on the CIRCLE code repository (http://gitlab.fet-circle.eu).

The translation into actual MolComML language enables
the exchange of configuration files among simulation plat-
forms. We show a part of the XML code in Fig. 4. As
shown, the different elements and parameters are clustered

by type.

S. CONCLUSIONS

This paper has laid the foundations of the Molecular Com-
munication Markup Language (MolComML). It is proposed
as an XML-based format aimed at universalizing the system
description in software, simulation tools and experimental
test-beds, targeting both mutual understanding among the
disperse islands of knowledge in this highly multidisciplinary
research field and to guarantee reproducibility of research
achievements. A proof-of-concept prototype is being imple-
mented in the BiNS2 simulator.
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