

Automata Modeling of Quorum Sensing for Nanocommunication Networks

Sergi Abadal Cavallé

Advisor: Ian F. Akyildiz

Table of Contents

- Introduction
- Quorum Sensing
- Automata Modeling of Quorum Sensing Bacteria
- Nanomachine Design Based on Quorum Sensing Bacteria
- Concluding Remarks

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks ${\it Thesis Defense}$

- Introduction
- Quorum Sensing
- Automata Modeling of Quorum Sensing Bacteria
- Nanomachine Design Based on Quorum Sensing Bacteria
- Concluding Remarks

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

3

Introduction: Nanotechnology and Nanomachines

I. F. Akyildiz, F. Brunetti, and C. Blázquez, "Nanonetworking: A New Communication Paradigm," Computer Networks (Elsevier) Journal, Vol. 52, pp. 2260-2279, August, 2008.

- Nanotechnology is enabling the development of devices in a scale ranging from one to a few hundred nanometers.
- A nanomachine is the most basic functional unit, which is consisting of nanoscale components and which is able to perform a specific task at nano-level, such as computing, data storing, sensing or actuation.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks ${\it Thesis Defense}$

Introduction: Interaction between Nanomachines

Due to the reduced size of the nanomachines, their limitations are clear:

- Range
- Complexity

NaNoNetworks expand the possibilities of nanomachines, increasing the complexity and range of operation of the system.

- HOW?
 - Molecular Communication

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

.

- Introduction
- Quorum Sensing
- Automata Modeling of Quorum Sensing Bacteria
- Nanomachine Design Based on Quorum Sensing Bacteria
- Concluding Remarks

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks Thesis Defense

Quorum Sensing

J. Henke and B. Bassler, "Bacterial social engagements," *Trends in Cell Biology*, vol. 14, 2004, pp. 648-656.

What?

Quorum Sensing is a mechanism used by bacteria to coordinate their behavior in a colony, as a function of their population.

Why?

Processes controlled by Quorum Sensing are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group.

How?

Quorum Sensing is achieved through the production, release, and subsequent <u>detection of</u> and <u>response to</u> a threshold concentration of *autoinducers*.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

9

Quorum Sensing: Principles and Mechanisms (I)

- When the population of bacteria grows, the extracellular concentration of autoinducers increases as well.
- If this concentration reaches the activation threshold, it means that a certain population has been achieved, and the group responds to it with a population-wide change of behavior.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks Thesis Defense

Quorum Sensing: Principles and Mechanisms (II)

- Autoinducers are the key of the process.
- Tiny molecules (smaller than 1nm) that trigger an autocatalytic reaction: trigger the release of more particles of the same kind.
- There is a vast variety of autoinducers, enabling:
 - Intraspecies communication: when only bacteria of one species is able to receive that autoinducer.
 - Interspecies communication: when chemosensors of many species of bacteria are able to sense that autoinducer (LuxS).

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

11

Quorum Sensing: Complex Systems

- Some bacteria count on more than one Quorum Sensing system.
- For instance, vibrio harveyi bacteria activate only with the presence of two different types of autoinducers at the same time.
- Nanomachines can mimick this feature to achieve a higher level of complexity.

7/12/2010

 $\label{eq:continuous} \mbox{Automata Modeling of Quorum Sensing for Nanocommunication Networks} \\ \mbox{Thesis Defense}$

Quorum Sensing: Communication Aspects

- Quorum Sensing is a special case of Molecular Communication.
- All bacteria are transmitters and receivers.
- The message is collective, modulated by the concentration of autoinducers in the environment.
- The message is encoded in the chemical composition of those autoinducers.

7/12/2010

 $\label{eq:continuous} \mbox{Automata Modeling of Quorum Sensing for Nanocommunication Networks} \\ \mbox{Thesis Defense}$

- Introduction
- Quorum Sensing
- Automata Modeling of Quorum Sensing Bacteria
- Nanomachine Design Based on Quorum Sensing Bacteria
- Concluding Remarks

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

15

Automata Modeling: Motivation

- The need for a functional model of Quorum Sensing bacteria (not biological model).
- The need for a model that integrates Quorum Sensing and the behavior after reaching quorum.
- The need for a model easily implementable to use it in future nanomachines and coordinate their actions.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks $\mbox{Thesis Defense}$

Automata Modeling: Definitions

- A Moore machine is a Finite State Machine represented by the six-tuple {Q, Σ, Λ, δ, τ, q_0 }.
 - Q: finite set of internal states.
 - Σ: finite alphabet of inputs.
 - Λ: finite alphabet of outputs.
 - δ: transition function.
 - **ο** τ: output function.
 - q₀: inital state.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

- 1

Automata Modeling of Quorum Sensing Bacteria (I)

- The alphabet of inputs maps different levels of concentration of autoinducers sensed by the bacteria.

 Σ
- The alphabet of outputs models different signals that modify the emission of autoinducers, mainly.
- We will divide the model in two parts:
 - Pre-Quorum section: in which the bacteria have not reached the critical population to activate.
 - Post-Quorum section: after reaching quorum, bacteria activate their "aggressive" behavior.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks Thesis Defense

Automata Modeling of Quorum Sensing Bacteria (II)

PRE-QUORUM SECTION

- In the pre-quorum section the bacteria:
 - Sense the environment: in order to know the concentration of autoinducers. (S states)
 - Emit autoinducers: in order to let the other bacteria be aware of one's presence. (E states)
- The emission of autoinducers depends on the amount sensed.
 - Basal rate. (state E1, output y1)
 - Autocatalytic rate. (state E2, output y2)
- The transitions are selected based on that dependance, leaving the section when the activation threshold is surpassed.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

19

Automata Modeling of Quorum Sensing Bacteria (III)

POST-QUORUM SECTION

- In the post-quorum section the bacteria:
 - Activate their collective behavior. (B states)
 - Sense the environment (S state)
 - Emit autoinducers. (E state)
- The collective behavior has to be modeled for each case (e.g. virulence, bioluminiscence).
- Sensing and emission states help to deactivate the new behavior if the population falls.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

Simulations of Quorum Sensing Bacteria

- The diffusion of autoinducers in the environment is a key factor in Quorum Sensing.
- It is modeled following Fick's second law:

$$\frac{\partial c(\bar{x},t)}{\partial t} = D \nabla^2 c(\bar{x},t)$$

To implement it, we need apply the finite differences method:

$$\frac{c(\overline{x},t+\Delta t)-c(\overline{x},t)}{\Delta t}-D\ \frac{c(\overline{x}-\Delta\overline{x},t)-2c(\overline{x},t)+c(\overline{x}+\Delta\overline{x},t)}{(\Delta\overline{x})^2}$$

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks ${\it Thesis Defense}$

Implementation of Quorum Nanomachines

- Collective Activity Synchronization
 - Direct application of Quorum Sensing
 - Tissue Repairing
 - Drug Release
- Collective actuation after Localized Sensing

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

29

Collective Activity Synchronization: Processing Unit

- The outputs of the PU are inputs of the CU:
 - $lacktriangledown d_{1-4}$: comparison of the concentration sensed (R) with different thresholds (T_{1-4}) .
 - w: waiting signal.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

Relaxation Time

 Bacteria have ways to differentiate their own autoinducers from autoinducers released by other individuals. Nanomachines do not.

- It is an important issue to avoid erroneous activations.
- Nanomachines NEED TO WAIT until their autoinducers diffuse away before sensing the environment again.
 - HOW?
 - With the wait signal.
 - HOW MUCH?

$$t_{MIN} \approx (\frac{8\pi p}{3})^{\frac{2}{3}} \frac{R^2}{4\pi D}$$

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

Collective Activity Synchronization: Simulations

- Several differences with the simulations involving bacteria:
 - Deployment of a given number of nanomachines.
 - No reproduction.
 - Application of post-Quorum behavior.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks Thesis Defense

Implementation of Quorum Nanomachines

- Collective Activity Synchronization
- Collective Actuation after Localized Sensing
 - Reaction to a certain localized event
 - Cancer Detection
 - Antibiotic purposes

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks
Thesis Defense

37

Collective Actuation after Localized Sensing

- A cluster of nanomachines is deployed in the environment.
- Their behavior is as follows:
 - If <u>at least one</u> of the nanomachines senses a certain event, all of them must activate by means of Quorum Sensing.
 - If not, they must remain dormant.
- In the simulations, the concentration of a certain chemical will be monitored.

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks ${\it Thesis Defense}$

- Introduction
- Quorum Sensing
- Automata Modeling of Quorum Sensing Bacteria
- Nanomachine Design Based on Quorum Sensing Bacteria
- Concluding Remarks

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks

Thesis Defense

43

Concluding Remarks

Conclusions:

- Quorum Sensing can be used to coordinate or synchronize the action of nanomachines.
- An automata model has been presented and simulated for Quorum Sensing bacteria.
- This model can be used as the central control unit of nanomachines that perform Quorum Sensing.
- Two different implementations have been simulated and delay results have been extracted.

7/12/2010

 $\label{eq:continuous} \mbox{Automata Modeling of Quorum Sensing for Nanocommunication Networks} \\ \mbox{Thesis Defense}$

Thank you!

Thank you very much for your attention. Any question?

7/12/2010

Automata Modeling of Quorum Sensing for Nanocommunication Networks Thesis Defense