



# Wake-Up Transceiver Architectures with Symbol Time Estimation Schemes for ElectroMagnetic NanoNetworks

**FINAL YEAR PROJECT** 

ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ DE BARCELONA

## Raül Gómez Cid-Fuentes

Advisor: Ian F. Akyildiz





## Table of Contents



- Introduction
- Transceiver Architecture for EM Nanonetworks
- Symbol Time Estimation
- Wake-Up Receiver
- Conclusions and Open Issues

## Table of Contents



- Introduction
- Transceiver Architecture for EM Nanonetworks
- Symbol Time Estimation
- Wake-Up Receiver
- Conclusions and Open Issues



- [1] Ian F. Akyildiz and J.M. Jornet. Electromagnetic wireless nanosensor networks. Nano Communication Networks, 2010.
  - Nanotechnology is enabling the control of matter at an atomic and molecular scale:
    - At this scale, novel nanomaterials show new properties not observed at the microscopic level which can be exploited to develop new devices and applications.



Fig. 1 - Nanosensor device. [1]



[1] Ian F. Akyildiz and J.M. Jornet. Electromagnetic wireless nanosensor networks. Nano Communication Networks, 2010.

- Graphene: a one-atom-thick planar sheet of bonded carbon atoms in a honeycomb crystal lattice.
  - A prime candidate to become the silicon of the 21<sup>st</sup> century due to:

Thermoelectric current effect Self cooling and heat reabsorption



Fig. 2 - Graphene atomic structure.



[2] J.M. Jornet and Ian F. Akyildiz. Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In Antennas and Propagation (EuCAP), 2010 Proceedings of the Fourth European Conference on, pages 1 –5, 2010..

- Graphene can be used to manufacture novel nano-antennas with atomic precission.
  - New antenna theory has been required to model the quantum effects that affect the propagation of EM waves in graphene
- Using a 1 um x 10 nm graphene-based nano-antenna we can radiate in the Terahertz Band (0.1 – 10 THz)
  - Which coincides with the expected operating frequency of graphene devices.



[3] J.M. Jornet and I.F. Akyildiz. Channel capacity of electromagnetic nanonetworks in the terahertz band. pages 1 –6, may. 2010.

- The Terahertz Band (0.1-10 THz) is strongly affected by molecular absorption from different types of molecules (specially water vapor).
  - For communications over a few tens of meters, this limits the potential of the band to a single transmission window at 300 GHz.
  - For the expected distances in nanonetworks (below 1 meter), the Terahertz Band offers huge bandwidths, almost 10 THz.



[4] J.M. Jornet and I.F. Akyildiz, "Information Capacity of Pulse-based Wireless Nanosensor Networks," in Proc. of Proc. of the 8th Annual IEEE SECON, Salt Lake City, Utah, USA, June 2011.

- TS-OOK (Time Spread On/Off Keying Mechanism)
  - A new communication scheme based on the asynchronous exchange of femtosecond-long pulses.
  - Allows very simple and energy efficient nano-transceiver architectures.
  - Femtosecond-long pulses are already being used for nanoscale sensing and imaging.
  - It provides almost orthogonal channels for different users.



Fig. 3 – TS-OOK modulation scheme. Not in scale



[5] M. Dragoman and A.A. Dragoman, D.and Muller. High frequency devices based on graphene. In Proc. of *International Semiconductor Conference*, *September* 2007.

[6] Alma E. Wickenden, et al., Spin torque nano oscillators as potential Terhertz communications devices. Technical report, Army Research Laboratory, 2009.

- Promising Terahertz sources can be classified into:
  - RF NEMS: Oscillation beyond 1 Terahertz will be possible [5]. This technology leads to full graphene circuits.
  - STNO: Future low-voltage, room temperature Terahertz Oscillators [6].
- In any case, the oscillation frequency of these sources depend on the energy supplied.
  - The Energy constraints will provide bad Terahertz Sources



Fig. 4 – STNO device geometry.



#### Our Work

- The timing and energy constraints limit the performance of nanonetworks and present a challenge to guarantee the communication among nanodevices.
  - Timing: There are frequency drifts among nanodevices
  - Energy: A nanodevice can send just a few hundred of bits every minute
- We provide the bridge between the antenna and the nanodevice which consists of three main contributions:
  - A transceiver architecture designed to improve the Symbol Error Rate in the Terahertz channel for pulse-based modulations, which simplifies synchronization schemes built on top.
  - A symbol time estimation built on top of the transceiver architecture to guarantee the successful reception of the symbols.
  - An asynchronous synchronization scheme to detect new transmissions based on a Wake-Up receiver module.

## Table of Contents



- Introduction
- Transceiver Architecture for EM Nanonetworks
- Symbol Time Estimation
- Wake-Up Receiver
- Conclusions and Open Issues



#### Goal:

- We present a very simple transceiver architecture that:
  - Supports pulse-based modulations in the Terahertz band.
  - Simplifies future synchronization designed on top.

#### **Properties:**

- Simple architecture  $\rightarrow$  Suited for nanodevices.
- Outperforms previous architectures in terms of pulse detection capabilities.
- Simplifies the symbol time estimation designed on top of this architecture.



Fig. 5 – Transceiver block diagram architecture





Transmitter

Fig. 6 – Transmitter block diagram architecture

- Encoder:
  - Buffer or memory
  - Codification schemes
- Pulse Generator:
  - Converts the logical values into voltage
- Bitrate:
  - Decides when the next symbol is sent
- Output Amplifier
  - Matches antenna
  - Provides enough power





Fig. 7 – Receiver block diagram architecture

- Receiver
  - Terahertz Front-End
    - Dual to Output amplifier
  - Power Detection
    - Calculates the input power
  - Low pass filter
    - It approximates an ideal integrator

- Peak detector
  - It fixes its output value to "1" when its input is above the threshold. Continuous comparison.
- Decoder
  - Decodes the received packet
- Synch
  - Switches On and Off the receiver



[9] R. Mills and G. Prescott. A comparison of various radiometer detection models. IEEE Transactions on Aerospace and Electronic Systems, 1996

Ideal Non-Coherent Receiver



Fig. 9 – Architecture of an ideal non-coherent receiver

#### Main Challenges:

- The receiver should operate at 10 THz
- Time-spread modulations, the pulse time is 1000 times shorter than.
- Estimating the time of arrival with an error of some femtoseconds is very challenging

#### Solution:

The expected time of arrival can be larger than the pulse time



[10] A. Gerosa, S. Solda, A. Bevilacqua. An energy-detector for noncoherent impulse-radio UWB receivers. IEEE Transactions on Circuits and Systems I, May 2009

[11] F.S. Lee and A.P. Chandrakasan. A 2.5 nJ/bit 0.65 V pulsed UWB reveiver in 90 nm CMOS. IEEE Journal of Solid-State Circuits, December 2007.

## **Usual Symbol Detection**

- In [10,11], the integration time is increased in 10-100 times
  - Decomposing this integration time into N integrations:



Fig. 10 – Example of the noise effect in typical symbol detectors

- As soon as the integration time is increased, the noise is averaged with the signal.
- This effect drops the performance of the receiver.

## **Our Symbol Detection**

We propose to use a the maximum function instead of the addition:



Fig. 11 – Example of the noise effect in the proposed symbol detector

- Better Signal to Noise ratio
- But:
  - Do we have to implement N integrators?
  - What if the pulse is received in the middle of two of this intervals?



- Receiver Architecture for EM Nanonetworks with Continuous-time integration
  - If we use  $N \to \infty$  Integrators, we convert the system into a linear system with input-to-output relationship:  $x(t) = \int_{t-T_n}^t u(\tau)^2 d\tau$
  - We seek for the maximum of this function over a time T

$$\hat{s}[n] = \begin{cases} 1 & \text{if } \max_{t \in (0,T)} x(t) > V_{th} \\ 0 & \text{otherwise} \end{cases}$$

However, since there is no ideal continuous-time integrator we propose the use of a second order low-pass filter.





Fig. 12 – Comparison between the integrator (left) and second order low-pass filter (right) impulse responses (arbirtrary units)



Fig. 13 – Receiver architecture block diagram



- Detection of logical "0"
  - We discretize x(t) into N independent random variables  $X_i$  with probability density function:

$$f_n(y) = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} y^{(\nu-2)/2} e^{-y/2}, \quad y \ge 0$$
where  $Y = 2X / N_0$ 

- Chi-square distribution
- **○** Thus, the probability density function of  $\max \mathbf{X} = \max\{X_1, \dots, X_N\}$ :

$$f_{max,n}(y,N) = NF_n(y)^{N-1} f_n(y)$$



- Detection of logical "1"
  - We discretize x(t) into:

$$f_n(y) = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} y^{(\nu-2)/2} e^{-y/2}, \quad y \ge 0, \quad f_{max,n}(y,N) = NF_n(y)^{N-1} f_n(y)$$

 $\bullet$   $N_{c}$  random variables of signal with probability density function:

$$f_s(y) = \frac{1}{2} \left( \frac{y}{\lambda} \right)^{(v-2)/4} e^{-\frac{(y+\lambda)}{2}} I_{(v-2)/2}(\sqrt{y\lambda}), \quad y \ge 0$$

where:

$$Y = 2X/N_0$$

$$\lambda = 2E/N_0$$

• Thus, the the probability density function of  $\max \mathbf{X} = \max\{X_1, \dots, X_N\}$ :

$$f_{max,sn}(y, N_s, N_n) = F_{max,s}(y, N_s) f_{max,n}(y, N_n) + f_{max,s}(y, N_s) F_{max,n}(y, N_n)$$

Where:

$$f_{max,s}(y,N) = NF_s(y)^{N-1} f_s(y)$$



[12] J. M. Jornet and I. F. Akyildiz. Channel capacity of electromagnetic nanonetworks in the terahertz band. In *Proc. of IEEE International Conference on Communications*, May 2010.

## Model Validation

- Assumptions:
  - Path loss and noise from [12]. These values are expressed in terms of the distance
  - TS-OOK modulation scheme. Almost orthogonal channels, so we do not consider collisions
  - The transmitter encodes logical "1" with second derivative 1 pJ femtosecond-long gaussian pulse
  - The receiver is perfectly synchronized

We validate the expressions for "1"s and "0"s in the Terahertz channel for a

distance of 66mm.

| Т                  | N   | N <sub>s</sub> |
|--------------------|-----|----------------|
| 3 T <sub>p</sub>   | 2   | 2              |
| 30 T <sub>p</sub>  | 15  | 2              |
| 300 T <sub>p</sub> | 110 | 2              |

Table. 1 – Relation between the time interval and number of random variables to model the symbol detection



Fig. 15 – Model Validation. Numerical over simulation results



### Symbol Error Rate Estimation

We compare the SER estimation of our symbol detector to the SER estimated in a usual receiver architecture.



Fig. 16 – Comparison between the SER provided by the proposed receiver and current receiver in terms of the distance for different time intervals



Fig. 17 – Comparison between the SER provided by the proposed receiver and current receiver in terms of the time interval width for a distance of 66 mm

- The SER has a log-log dependence with the width of the time interval
- o  $n = T/T_p$



[9] R. Mills and G. Prescott. A comparison of various radiometer detection models. IEEE Transactions on Aerospace and Electronic Systems, 1996

#### Symbol Error Rate Estimation

We propose the following model

$$SER_n = n^{0.45}SER_{n=1}, SER(r) = r^{0.45}SER_{n_1}$$

Then, we obtain the value in origin (n = 1) using the model of ideal symbol detectors in [9].



Fig. 18 – Comparison between the SER provided by the proposed receiver and current receiver in terms of the distance for different time intervals

#### Maximum Bitrate

- The use of second-order low-pass filters instead of ideal integrators adds InterSymbol Interference (ISI)
- This ISI affects the receiver only if pulses are not spread in time



Fig. 19 - SER in terms of bitrate

## Table of Contents



- Introduction to Nanonetworks
- Transceiver Architecture for EM Nanonetworks
- Symbol Time Estimation Scheme
- Wake-Up Receiver
- Conclusions and Open Issues



#### Goal:

- We propose a simple frequency estimation scheme that:
  - Is built on top on the transceiver architecture
  - Guarantees the successful reception of the packets
  - Is evaluated in terms of Packet Error Rate estimation

#### Properties:

- It uses special properties from the receiver architecture
- Low overhead. This symbol time estimation needs less than 10 pulses to synchronize
- Simple algorithm



Fig. 20 – Context of the symbol time synchronization block



[5] M. Dragoman and A.A. Dragoman, D.and Muller. High frequency devices based on graphene. In Proc. of *International Semiconductor Conference*, *September* 2007.

[6] Alma E. Wickenden, et al., Spin torque nano oscillators as potential Terhertz communications devices. Technical report, Army Research Laboratory, 2009.

[13] M. A. Hoefer, et al., Theory of magnetodynamics induced by spin torque in perpendicularly magnetized thin films. *Physical Review* Letters, 2005.

[14] Lin, L. Y., et al, "A Frequency Synchronization Method for IR-UWB System", In Proc. of International Conference on Wireless Communications, Networking and Mobile Computing, 2007

#### Motivation:

- RF NEMS and STNO are expected to provide Terahertz oscillation in the nanoscale but they are energy dependent[5],[6],[13].
- Thus, we expect the operating frequency of different nanodevices to be different.
- PLL synchronization is discouraged in carrierless pulse based communications[14].
- The transceiver architecture proposed provides very interesting synchronization options.



- Frequency Synchronization properties of the receiver:
  - Usual receivers:



Our Receiver



- Frequency Synchronization properties of the receiver:
  - Usual receivers:





- Frequency Synchronization properties of the receiver:
  - Slotting a time interval into K sub-intervals, the relation between the error probabilities for logical "0"s and "1"s are:



Fig. 21 – Property of subinterval slotting

We successfully receive the a logical "0" if every subinterval is decoded as "0"

$$P_{\epsilon|s=0} = 1 - (1 - p_0)^K \approx K p_0$$

• We receive an error if in the reception of a logical "1" if there is an error in the "1" and the rest time intervals are kept as "0"

$$P_{\epsilon|s=1} = p_1 (1 - p_0)^{K-1} \approx p_1$$



- Frequency Estimation
  - To estimate the frequency we count number of periods between pulses:



- As shown in the example: Receiver 1 detects a T<sub>s</sub> of 5 sampling periods
- Receiver 2 detects a T<sub>s</sub> of 4 sampling periods
- We refer this as Relative Frequencies
- To improve the performance in the estimation, we have information a priori about the received frequency
  Expected time K



Fig. 22 – Standby - Reading time



- Frequency Estimation:
  - There is an error in this estimation. The receiver can count only an integer numbers of periods
  - We propose the use of a synchronization preamble:



Fig. 22 – Example of the frequency estimation process

$$\hat{N} = \sum_{i=1}^{N_{synch}} N_i / N_{synch} = N + \epsilon$$

$$|\epsilon| < \frac{1}{N_{synch} - 1}$$

Using this estimation, there is always an error that the receiver must be able to handle



- Adaptive Frequency Correction
  - During the transmission, the receiver must be able to cope handle the estimation errors and possible frequency drifts
  - "1"s Provide synchronization information
  - "0"s Provide uncertainty



Fig. 22 – Example of the adaptive frequency correction algorithm



- Optimum Number of Subintervals
  - It must Guarantee that the next pulse is inside the time interval
  - It must be kept as small as possible to reduce the error probability

$$K_{i+1} = \left\lceil (n_{zeros} + 1)(\hat{N}_s + \epsilon) + 1/2 \right\rceil - \left\lfloor (n_{zeros} + 1)(\hat{N}_s - \epsilon) - 1/2 \right\rfloor$$

The average number of subintervals is:

$$\overline{K} = \sum_{n=0}^{\infty} p_n E[k_n] = 2 \left( 1 + \frac{\epsilon_{max}}{P_{s=1}} \right)$$

- Where:
  - Pn: probability of receiving n consecutive "0"
  - E[kn]: average number of subintervals when the receiver has received n consecutive "0"
  - E: maximum error accepted
- Then, there are 2K-1 zero subinterval per each one subinterval, thus we approximate the Packet Error Rate as:

$$PER = 1 - (1 - P_{\epsilon|s=1} / 2 - P_{\epsilon|s=0} / 2)^{N_{bits}} \qquad P_{\epsilon|s=0} \approx \frac{\overline{K}}{2\overline{K} - 1} SER(2K - 1)$$

$$P_{\epsilon|s=1} \approx SER(2K - 1)$$



#### Preamble Evaluation

- There is a probability that the error is kept inside the maximum error accepted.
- This maximum error depends on the number of pulses for synchronization
- Probability estimated in terms of the channel degradation



Fig. 22 – Probability of no synchronization in terms of the SER and the synchronization preamble length

- Frequency correction evaluation
  - We have simulated the adaptive algorithm proposed.
  - We observe that unbalancing probabilities we obtain a minimum in the Packet Error Rate estimation



Fig. 23 – Evaluation of the frequency correction. PER in terms of the maximum error and unbalancing parameter



- Frequency correction Evaluation
  - We evaluate the expression for the Packet Error Rate in terms of the channel degradation and we compare the results with the simulation results for the algorithm
  - Appropriately unbalancing probabilities



Fig. 24 PER comparison. Numerical model vs. Simulation

- Benefits of this frequency correction
  - We compare the Packet error rate with:
    - Ideal synchronization
    - Non frequency correction
  - We outperform in one order of magnitude



Fig. 25 PER comparison. Numerical model vs. Simulation



- How many pulses must be sent to synchronize frequencies?
  - A few number of pulses increases the PER, increases the time interval but reduces overhead
  - Large number of pulses improves PER, reduces time interval but increases overhead.
  - We define:

$$tput = \frac{\left(N_{bits} - N_{synch} / P_{s=1}\right)\left(1 - PER_{synch}\right)p_{synch}}{N_{bits}(1 - PER_{I})}$$



Fig. 26 Optimum synchronization preamble length

- Less than 10 pulses are needed to synchronize if the adaptive algorithm is being used
- Alternatively, without the algorithm some tens of pulses are needed.

## Table of Contents



- Introduction
- Transceiver Architecture for EM Nanonetworks
- Symbol Time Estimation Scheme
- Wake-Up Receiver for EM Nanonetworks
- Conclusions and Open Issues



#### Goal:

- We provide an asynchronous synchronization scheme to detect new transmissions that:
  - is based on a wake-up receiver
  - We evaluate its functionality over the ALOHA protocol

### Properties:

- Asynchronous synchronization
- It is capable of rejecting packets before the receiver wakes up if the receiver is not the target of this packet



Fig. 27 – Context of the Wake-Up module



#### Motivation:

- Due to power restrictions, a receiver node can only decode some tens of packets of 200 bits each minute.
- The rest of the time, the receiver must be sleeping to save energy.
- It is too expensive (in energy) for the receiver to decode any packet not targeted to it.
- Due to clock drifts, duty cycled synchronization schemes do not apply



[15] Ye, W.; Heidemann, J. & Estrin, D. An energy-efficient MAC protocol for wireless sensor networks. In *Proc. of the IEEE Computer and Communications Societies. INFOCOM, 2002* 

- Duty cycled synchronization schemes
  - Nodes wake up periodically to sense the channel, in case any node is transmitting
  - When a node is transmitting, it sends a synchronization preamble. If the receiver decodes the packet, the receiver switches to reception and the transmitter sends the packet
  - Suitable For carrier communications
  - Power Consumption proportional to:

$$P = \frac{T_1}{T_1 + T_2}$$

- EM Nanonetworks
  - TS-OOK: Carrierless
  - We consider frequency drifts
  - Some tens of nanosecond long packets per minute
  - The energy constraints limit the duty cycle to be very reduced.
  - Maximum drifts of nanoseconds allowed



Fig. 28 – Example of duty cycled synchronization schemes



[16] S. Marinkovic and E. Popovici. Nano-power wake-up radio circuit for wireless body area networks. In *Proc. of IEEE Radio and Wireless Symposium*, January 2011.

### Wake-Up Receiver

- We need an asynchronous scheme to synchronize the nanodevices
- A wake-up receiver needs to constantly sense the channel but using less power [16].
- The wake-up signal must be easier to decode.
- In particular, authors in [16] they use a second frequency to synchronize



Fig. 29 – Comparison between duty cycled and wake-up synchronization schemes



- Wake-Up Signal
  - The medium is shared with other users.
  - The pulses are spread in time
  - The receiver cannot try to synchronize every pulse it detects.
  - The Wake-Up signal cannot be a preamble of pulses



We propose the use of pulse bursts.





#### **Detection of a Pulse Burst**

- We model this pulse burst as N<sub>R</sub> independent pulses.
  - This detection can be done with power detectors, detecting a minimum power during a minimum time
- To provide robustness, we suppose that not all of the pulses are needed to detect a burst.

$$P_{D} = \sum_{i=0}^{N_{B}-N_{b}} {N_{B} \choose N_{b}+1} (1-p_{d})^{N_{b}+i} P_{d}^{N_{B}-N_{b}-i}$$

Additionally, it is also valid for when a neighboring node starts a transmission.

#### **Effect of noise and Interference**

We model noise and interference as Poisson arrival.

$$\lambda = \lambda_n + \lambda_i$$

$$\lambda_n = p_0 / T$$

$$\lambda_i = N \lambda_{TX}$$

We model the behavior of the wakeup module in presence of noise as a M/D/c/c queue



Fig. 30 – M/D/c/c queue model

8/8/2010



- Orthogonal Burst Preamble
  - As the number of neighboring nodes increases, the number of false alarms is increased.
  - To be energy consistent, the nanodevice has to wake-up only if this is the target of this packet
  - We propose time ortogonality between two consecutive pulses



Fig. 31 – Example of Orthogonal Burst Preamble



### Protocol Description

We propose to build this synchronization scheme on top of the ALOHA protocol



Fig. 32 – Protocol descritption. Current states and power consumption

- A nanodevice sends a packet whenever it needs to send it.
- The receiver aknowledges the packet by using a burst acknoledgment (BACK).
- If the transmitter does not receives the BACK, it sends again the packet.



Fig. 29 – Receiver state diagram

8/8/2011



#### False alarm

We refer as a false alarm as starting the reception due to neighboring nodes, interference or noise



Fig. 33 – False alarm probability in terms of the node density



Fig. 34 – False alarm probability in terms of the packet size

- When the pulse burst is short:
  - The false alarm is mainly affected by noise
- When the pulse burst is large:
  - The false alarm is mainly affected by interferences and neighboring nodes
- When using orthogonal preambles, the node is not affected



### Loss Probability

- Losing a packet due to the protocol depends on the number of neighboring nodes
- However this loss probability is very low. The system is highly scalable



Fig. 35 – Loss probability in terms of the node density

### Energy Consumption

- We model the energy consumption in terms of the stateflow.
- The energy to receive a pulse is fixed to 0.1 pJ while the power in wake up is fixed to 0.7 pW



Fig. 36 – Energy consumption in therms of the node density

## Table of Contents



- Introduction
- Transceiver Architecture for EM Nanonetworks
- Symbol Time Estimation
- Wake-Up Receiver
- Conclusions and Open Issues

## Conclusions and Open Issues



### Conclusions:

- We provide a bridge between the antenna and the future network protocols.
  For this:
- We propose a low complexity transceiver architecture, which provides better performance in terms of Symbol Error Rate and simplifies the frequency synchronization designed on top.
- We propose a low complexity frequency synchronization scheme to guarantee the successful packet delivering. This is evaluated in terms of Packet Error Rate.
- We propose an asynchronous synchronization scheme based on a wake-up receiver for nanodevices to enable the communication among nanodevices.

## Conclusions and Open Issues



### Open Issues:

- Simulation and implementation of the transceiver architecture over a specific technology.
- Integration of the transceiver architecture results and frequency estimation in a network simulator
- Network protocols designed built on top of our Wake-Up transceiver architecture.

### Wake-Up Transceiver Architecture with Symbol Time Estimation for EM Nanonetworks



# Thank you very much for your attention!