
Multicast On-Chip Traffic Analysis Targeting Manycore NoC Design

Sergi Abadal, Albert Mestres, Eduard Alarcón

and Albert Cabellos-Aparicio

NaNoNetworking Center in Catalonia (N3Cat)

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Email: abadal@ac.upc.edu

Raúl Martı́nez

Department of Computer Architecture

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Abstract—The scalability of Network-on-Chip (NoC) designs
has become a rising concern as we enter the manycore era.
Multicast support represents a particular yet relevant case
within this context and has been the focus of different research
efforts, mainly due to the poor performance of NoCs in
the presence of this increasingly important type of traffic.
However, most of the proposed schemes have been evaluated
using synthetic traffic or within a full system, which is either
unrealistic or costly. While traffic models would allow to better
assess their performance, existing proposals do not distinguish
between unicast and multicast flows and often are bound to a
given number of cores. In this paper, a trace-based multicast
traffic characterization is presented with the aim to provide
guidelines for the modeling of multicast communications in
manycore settings. To this end, the scaling trends of aspects
such as the multicast traffic intensity or the spatiotemporal
injection distribution are analyzed. The novelty of this work
resides both on its scalability-oriented approach and on the
use of correlation metrics to evaluate potential prediction
opportunities.

Keywords-Manycore Processors; Multiprocessors; Multicast;
Broadcast; On-Chip Traffic Analysis; Network-on-Chip; Scal-
ability;

I. INTRODUCTION

Dominant trends in processor design are currently point-

ing towards a rapid increase in the core density of multipro-

cessors. However, several challenges need to be addressed

before this tendency translates into effective parallel per-

formance improvements. On-chip communication is among

them and is currently gaining importance within this context,

to the point that the research focus is gradually shifting from

how cores compute to how cores communicate.

Scaling the number of cores of a given multiprocessor

architecture generally implies an increase of the communica-

tion intensity for a program sufficiently parallelized. As we

reach the manycore era, the main concern is that traditional

Network-on-Chip (NoC) approaches may not be able to

cover the communication requirements of a multiprocessor

due to various reasons. At the link level, it is expected that

the power available for communication in future processors

will not be enough to maintain a NoC based on electrical

interconnects [1]; whereas at the network level, the per-

formance and power of these NoCs scales poorly in the

presence of selected types of traffic, e.g. global or multicast.

In order to avoid communication to become the perfor-

mance bottleneck of next-generation multicore processors,

numerous research endeavors have been made towards the

development of scalable NoCs. On the one hand, diverse

proposals seek to improve the power and performance of

traditional NoCs at both the link and network levels [2]–

[5]. On the other hand, considerable efforts have been

directed towards overcoming the fundamental limitations

of traditional resistive-capacitive (RC) wires by extending

the original NoC paradigm to emerging interconnect tech-

nologies. These include the employment of vertical vias

within stacked architectures [6], on-chip radio frequency

(RF) transmission lines [7], nanophotonic interconnects [1],

[8], and on-chip antennas enabling the concept of wireless

NoC [9], [10].

In this paper, we focus on the particular case of multicast

communications. In conventional NoCs, multicast messages

have been originally broken down into multiple unicast

packets at the network interface and served independently.

Besides being highly power-inefficient, such approach sig-

nificantly penalizes the network performance as implies a

large serialization delay and significant levels of contention

at the source [11]. This, in turn, negatively affects the

multiprocessor performance [12], [13]. Such negative im-

pact is intensified in denser networks as, first, the average

number of destinations per message in multicast-demanding

operations grows with the number of cores (see Section IV).

Furthermore, and even though multiprocessors have been

traditionally architected trying to limit the use of multicast

communications, some architectural methods may require it

to scale beyond a given number of cores. For instance, cache

coherency protocols normally avoid multicast by storing the

state of each shared variable in a directory. This increases

the latency of the protocol and, depending on the storage

policy, implies area and energy overheads that may not

be affordable in manycore systems. Alternatives such as

TokenB [14] or the implemented by AMD HyperTransport

[15] avoid such possibility at the expense of incrementing

the multicast requirements.

Improving the performance of multicast transactions not



only implies a boost in the performance of a given set of

architectures, as proved in [12], but also opens the door

to new architectural innovations for manycore processors

[11]. In light of this, explicit multicast support has been

proposed in the literature for conventional NoCs [11]–[13],

[16], [17] or considering emerging interconnect technologies

[10], [18], [19]. A distiction is made in the former case

between path-based multicast, wherein the message travels

around the chip and is sequentially delivered to the intended

destinations; and tree-based multicast, where the message is

replicated at intermediate routers and delivered following a

virtual tree [16]. Regardless of the approach taken, multicast

support proposals been tested either using synthetic traffic or

within full-system simulations, generally assuming a fixed

network size. Consequently, their impact upon the net-

work performance is imprecise and their scalability remains

largely unknown.

Given the increasing importance of multicast communica-

tion, there is a need to understand how the multicast traffic

requirements scale. Providing an accurate multicast traffic

characterization in different scenarios would be useful for

the early-stage design and evaluation of NoCs in general

and multicast mechanisms in particular. However, to the

best of the authors knowledge, no tools are available for

the analysis and modeling of multicast traffic. As pointed

out below, existing efforts do not differentiate between

unicast and multicast flows and are generally bound to a

given network size. In this work, we aim to bridge this

gap by presenting a characterization of the multicast traffic

for a given architecture considering two different coherence

protocol types. This paper is an extension of our previous

work in [20] and presents new results on aspects such as

the multicast traffic intensity, number of destinations or

spatiotemporal distribution. Moreover, it proposes the use

of correlation metrics for further characterization and points

out that application phase behavior also applies to multicast

traffic.

The remainder of this paper is as follows. In Section

II, we summarize the related work in NoC traffic analysis

and modeling. In Section III, we detail the characterization

methodology used in this work. We present the results in

Section IV and conclude the paper in Section V.

II. RELATED WORK

The driving motivation behind traffic characterization is

the need for a cost-effective but accurate way to evaluate

networks in general and NoCs in particular. On the one hand,

network simulation using real traces is the most accurate

solution but traces are not always available; whereas, on the

other hand, typical synthetic traffics sacrifice faithfulness at

the expense of a lower computational cost. Modeling traffic

based on prior characterization works lies in between these

two extremes as it trades off the accuracy of trace-based

simulations for the simplicity of synthetic traffic.

Table I
LITERATURE ON TRAFFIC CHARACTERIZATION AND MODELING

Ref. Cores Coherence Benchmarks Mcast?

[21] 32 MESI SPLASH-2 No

[22] 8 MSI PARSEC No

[23] 32 MESI SPLASH-2, PARSEC No

[24] 40/49/64 MSI
SPEC CPU2000,

No
SPLASH-2, PARSEC

[25] 16/64 MESI OpenMP No

[26] 8/16 MESI
TPC-C, SPECweb99,

No
TPC-H, SPEC CPU2000

[27] 16/25 MSI SPEC, MediaBench No

[28] 49 MSI SPLASH-2 No

[29] 16/32/64 MSI SPLASH-2 No

[11] 16/25
SGI Origin, SPEC, TPC-H, TPC-W,

Yes
TokenB, HT SPLASH-2, MediaBench

[30] 16 HT SPLASH-2 Yes

[12] 64 HT, TokenB SPLASH-2, PARSEC Yes

[31] 16 MSI NU-MineBench, SPLASH-2 No

Traffic characterization in NoC can be performed by

analyzing traces obtained from full-system simulations. Each

trace contains information on the messages generated by a

given application running over a particular multiprocessor

architecture. Common characteristics or patterns in the traffic

of different applications can be found and later used as

guidelines for the optimization of NoCs. Multiprocessor

benchmarks such as SPLASH-2 [21] and PARSEC [22]

consist of a heterogeneous set of parallel programs, which

are commonly used as target applications for evaluation pur-

poses. Multiprogrammed and server workloads such as TPC-

H or SPECweb99, which imply the simultaneous execution

of various instances of a set of simple applications, are also

used.

Table I contains a summary of the works that follow

trace-based analysis, detailing the simulated architectures

and the employed benchmarks. Note that most of these

works do not explicitly distinguish between unicast and

multicast communications. In [21] and [22], the focus is

put on the study of the behavior of a single-level cache

when running the SPLASH-2 and PARSEC benchmarks,

respectively, to then provide some hints on their general

communication demands. Subsequent works have investi-

gated several characteristics of the traffic generated within

a two-level cache system. A 32-core system is simulated

in [23] in order to provide insight into the spatiotemporal

variations of communication arising from common data

sharing patterns. Spatiotemporal variations are also inves-

tigated in [24] and correlated with the network congestion

they may cause. To this end, it is first demonstrated that the

different program phases produce periodic patterns in the

injection of traffic. The probability of having hotspots is then

investigated through the inspection of the spatial variance

of traffic injection. The work conducted in [31] registers the

spatial pattern variations and uses this information to identify

the different phases of an application. The phase behavior



has been also investigated in [25], where the dominant

communication flows are determined on a per-phase basis.

Such results could be employed to build a hybrid network

that would adapt to give priority to these flows in each stage

of execution. In [26], NoC optimization is also proposed

through the study of the distribution of the packet length.

As mentioned above, traffic analysis also enables the

faithful yet simple modeling of traffic for NoC evaluation.

First proposals in this regard consider that three dimensions

are enough to model NoC traffic of different benchmarks

and architectures using one parameter per dimension [27]

or one parameter per dimension and node [28]:

• Temporal burstiness, resulting from the widely proven

self-similarity of NoC traffic and often modeled with

the Hurst exponent [32]. Such property is driven by the

fact that the generation of messages largely depends on

how the network served prior requests. One constant

Hurst exponent is proposed in [27] to capture the

burstiness of traffic, while others argue that the Hurst

exponent should be characterized over time in certain

situations [32].

• Spatial injection distribution, which models whether

the injection of packets is spread out or creates hotspots.

• Hop distribution, which models the probability of a

packet going through a given number of hops. It

depends on the NoC topology, the application and how

the application is mapped onto the processor. Some

authors demonstrate an analogy between a power law

called the Rent’s law and the spatial hop distribution

of a NoC [29].

When modeling traffic using such method, no distinction

is made between unicast and multicast flows. This may

be acceptable from a behavioural perspective only in the

case that multicast packets are replicated at the source

network interface and treated as unicast packets. In contrast,

existing models will need to consider both types of traffic

separately in cases where the network behavior changes with

the communication typology, i.e. path-based or tree-based

multicast.

Explicit multicast analyses have been thus far limited to

specific cases and oriented to motivate multicast enhance-

ments for NoC. For instance, the percentage of multicast

messages as well as the average number of destinations is

given in [12] considering two coherence protocols in a 64-

core system running the PARSEC and SPLASH-2 bench-

marks. These are also evaluated in [11] for a 16-core system,

which also provides the destination set distribution in order

to prove that in some situations many of them remain

unused. Finally, a breakdown of the messages generated

by the HyperTransport (HT) protocol is performed over the

SPLASH-2 benchmark in [30]. In spite of such efforts, traffic

models that distinguish between unicast and multicast flows

are not available yet.

Figure 1. Simulation-based multicast traffic analysis.

III. METHODOLOGY

The main objective of this paper is to perform a multicast

traffic analysis targeting NoC scalability. To this end, we

employ the methodology summarized in Figure 1. Basically,

we simulate different architectures running different bench-

marks in order to obtain a set of traces (one per application

and coherence protocol). These traces are then parsed with

the aim of extracting a set of statistics, which can further

processed and graphically visualized. Such characterization

can be later used to model realistic multicast traffic, allowing

to evaluate multicast routing schemes in practical scenarios

without having to resort again to full-system simulation.

The central element of the process is the simulator. We

use GEM5 [33], a widely used open-source framework

for the simulation of computer system architectures both

from the processor microarchitecture level and the system

level. Currently, GEM5 admits up to 64 cores with up to

three levels of cache and, out of the box, includes different

directory-based cache coherency protocols such as MESI,

MOESI or HyperTransport (HT). GEM5 also integrates

packages for the modeling and simulation of the NoC that

interconnects the cores. In order to obtain custom statistics

and traces oriented to multicast traffic analysis, we slightly

modified the network interface modules included by default.

When the first flit of a multicast packet is to be injected

through any network interface, its time of arrival, origin,

destinations, type, and size are registered into a trace file.

This way, the results are independent to the multicast routing

strategy. The output of GEM5 in our case is a file containing

detailed statistics on the CPU, memory system, and NoC

performance, as well as a trace with the data mentioned

above for each issued multicast. The latter can be processed

a posteriori in order to obtain a variety of multicast statistics

and figures, including those proposed in related works.

Figure 2 depicts the architecture considered in this paper.

A tiled configuration is assumed, wherein each tile com-

prises a core that implements the ALPHA instruction set and



Network 

Interface 

(NI)

Node

Router
Link

��

��

���� ��

Figure 2. Schematic representation of the simulated architecture.

accounts for 32-KB instruction and data L1 caches, as well

as a 512-KB bank of L2 cache and a piece of the coherence

directory. The main variables are the multiprocessor size,

which ranges from 4 to 64 tiles, and the coherency protocol.

We run the PARSEC (simmedium input set) and SPLASH-2

benchmarks on their entirety whenever possible, otherwise

the execution is limited to one billion instructions. Table

II shows a summary of the simulation parameters used

in the study from the architectural, NoC, and application

perspectives.

IV. CHARACTERIZATION RESULTS

Next, we present the results of the analysis in terms of

multicast message type and size, traffic intensity, number

of destinations, spatiotemporal distributions, spatiotemporal

correlations and phase behavior. A discussion of the pos-

sible implications on the NoC design is included in each

subsection.

Message Type and Size

The architecture of a multiprocessor is the main factor that

determines the methods that will trigger the transmission of

multicasts. Therefore, the nature and size of these messages

can be easily inferred from it. In the MESI coherence

protocol, multicast messages are mostly invalidations which

are generated upon a write to shared data and sent to the

cores that are currently sharing it. Invalidations are short

control messages, assumed to be of 8 bytes in our scenario.

In some cases, e.g. read to an invalidated block, the protocol

needs to multicast data responses to the main memory and

to a set of caches. These replies are less much frequent and

their size corresponds to the cache line size plus a given

overhead (8 bytes in our case). In the HT protocol, the

percentage of multicast long messages is expected be even

lower since all control requests are broadcast. Actual results,

however, show a similar size distribution for both coherence

protocols: short messages account for more than 99% of the

multicast in average. This figure is rather independent of the

system size and, in fact, rarely drops below 98%.

Note that the size of messages is a parameter relevant

to the NoC design. In conventional NoCs, it is important

to set the data path width taking into consideration the

Table II
SIMULATION PARAMETERS

Instruction Set ALPHA

System Frequency 2 GHz

Number of cores 4, 8, 16, 32, 64

Benchmarks PARSEC, SPLASH-2

L1 Cache (I&D) 32+32 KB, 2-way, 2 cycles

L2 Cache 512 KB/bank, 8-way, 10 cycles

Cache Line Size 64 B

Cache Inclusion Strict

Coherency Protocols MESI, HT

Main Memory Latency 30 ns

NoC Topology Mesh

Link/Router Latency 1/5 cycles

Flit Size 16 B

Number of Virtual Channels (VCs) 4

Buffer Size 5 flits per VC

dominant type of traffic. This fact is exemplified in [26],

which proposes to employ a dual NoC to optimize the

service of both short requests and long responses, and shows

substantial power and performance improvements with re-

spect conventional designs. Therefore, in case a network

plane would be devoted to serving multicast traffic, its design

should be strongly oriented to short messages. In a wireless

NoC, the size of a packet is also of central importance as

small messages generally imply a lower performance [34].

Multicast Traffic Intensity

The number of multicast messages per instruction is a

NoC-agnostic measure of the multicast intensity. It is a met-

ric that depends both upon the multiprocessor architecture,

as it defines the methods that generate multicast messages;

and upon the application, which defines the sharing struc-

tures and memory intensity. Figure 3 (left) plots the number

of injected multicast messages per one million instructions

assuming MESI (above) and HT coherence (below). It is

observed that applications generally become more multicast

intensive as the number of cores grows: note the steep

increases of particular cases such as bodytrack, fft or lu). In

comparative terms, HT coherence has multicast requirements

one order of magnitude larger than MESI. Although such

increase is application-dependent and does not follow a

common scaling trend, fitting methods on the average values

yield a logarithmic relation between multicast intensity and

number of cores. Application scalability limitations may

explain such tendency.

Assuming a given computation performance, it is possible

to infer the number of messages per clock cycle that the NoC

must support. It is important to take into consideration that

architectures are scaled in order to improve performance, so

that the multicast intensity will likely increase even further.

For instance, our simulations yielded a 13-fold increase in

the average execution speed of the target benchmarks. As

we will see next, the traffic intensity is also influenced by

the number of destinations per message.



�

�

��

��

���

����

� � �� �� ��

��

��

���

����

��	�

�����

�

��

��

��

��

��


�

� � �� �� �� �� �� �� ��

������ ��	
����

�

�

��

��

��

��

��

� � �� �� �� �� �� �� ��

��


���

���

��
�
��
��
��

�
�	

�
�

	


�
�
��
�
�
�
�

�
�

�
�
��

	
��
�	

�
�



��
�
�
��

���
���
���� ���	���
����


Figure 3. Number of multicast messages per 106 instructions and number of destinations per multicast message with MESI (above) and HT coherence
(below). Note the logarithmic scale.

Number of Destinations

The number of destinations per message is a metric that

firstly depends upon the multiprocessor architecture and,

in some cases, on the particular sharing structures of the

application being run. We evaluate the average number of

destinations per multicast over the course of each considered

application, to then obtain the minimum/average/maximum

of these values over all the applications for different system

sizes. Figure 3 (right) plots how the number of destina-

tions per multicast scale assuming MESI (above) and HT

coherence (below). In the former case, multicast are mostly

invalidations to a number of destinations that depends upon

number of sharers. The metric increases linearly with the

number of cores in terms of minimum, maximum and

average values: the application dependence is patent given

the difference between these numbers. In the latter case, the

coherence protocol issues on broadcast for each transaction.

Provided that almost all multicast messages are due to

coherence, the average number of destinations is around

N−1 in a N -core system regardless of the target application.

The importance of this metric lies within its impact on

the overall bandwidth requirements depending on the net-

work architecture. While the number of injected multicasts

increases with the number of cores, they only represent a

small percentage of all the communication transactions (see

labels in Figure 4). Less than 0.5% of all the transactions

are multicast in MESI; the ratio is higher in HT, but it

decreases sharply with the number of cores (from 12%

to 1.5%) due to the associated increase of the number

of unicast acknowledgements. In contrast, the amount of

ejected packets consistently increases due to the multiple

replication of each multicast message within the nework.

Figure 4 plots the percentage of ejected flits that are due

to multicast transactions, which grows above 2% in MESI

and almost reaches 50% in HT. This fact further encourages

0.09% 0.12%

0.24%

0.36%

0.46%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

4 8 16 32 64

Number of Cores

M
u

lt
ic

a
s

t
T

ra
ff

ic

MESI

12.88%

8.87%

5.34%

2.89%
1.54%

0%

10%

20%

30%

40%

50%

4 8 16 32 64

HT

Figure 4. Percentage of ejected flits due to multicast communication.
Labels indicate the percentage of injected multicast packets (without
replication).

the employment of shared-medium NoCs, if feasible, to

efficiently serve multicast traffic.

Spatial Distribution

An interesting aspect to investigate is the spatial dis-

tribution of the multicast traffic injection. Results in this

regard may be useful for the identification of potential

hotspots and could be employed to optimize the underlying

NoC by, for instance, applying priority policies. Note that

while the spatial injection distribution as defined here is

independent on the multicast scheme, the effects of the

resulting imbalance are not (i.e., multicast hotspots are more

detrimental in tree-based schemes). To evaluate the spatial

distribution, we calculated the coefficient of variation (CoV)

as cv = σ/µ, where σ and µ are the standard deviation and

mean of the multicasts injected by each node. We chose

this metric in order to measure dispersion while filtering out

the dependence of the standard deviation with the overall

number of injected messages. A higher CoV means a higher

concentration of the multicast injection over given cores.

There are several common memory access patterns that

generate traffic that can be multicast depending on the



architecture [23]. In MESI, applications heavily based on

producer-consumer patterns show imbalanced injection of

packets as producers are the main sources of multicast traffic.

Such assumption is not valid in HT, since every control

operation generates a broadcast message. Instead, the spatial

distribution provides insight about the memory activity of

different processors: cores that frequently access to shared

data will generate more broadcasts than those that do not.

Therefore, a lower imbalance is expected when compared to

MESI.

Figure 5 plots the CoV of each application in 4/16/64-core

systems assuming MESI and HT coherence, as well as the

average over all the applications. The CoV grows steadily

with the number of cores in an application-dependent man-

ner: results have been in fact sorted in descending order

based on the absolute growth of the imbalance, which

implies that applications that appear first may yield more

pronounced imbalance in manycore processors. From the

average behavior, it is observed that MESI shows a higher

imbalance in general terms. It is also shown that the injection

is more balanced in the SPLASH-2 benchmark, yet the

difference becomes negligible as the number of cores is

scaled.

Temporal Distribution

In order to accurately model any kind of traffic, it is

crucial to have a complete knowledge not only on its

intensity and spatial distribution, but also on its temporal

distribution. As shown in Section II, related works have

shown that on-chip traffic is self-similar since the generation

of new messages is dependent on the delivery of prior

messages. This creates memory effects and implies a given

burstiness at the transmitting end, property that is widely

known to have a negative impact on network performance.

Provided that multicast traffic is a subset of the on-chip

traffic, it is reasonable to deduce that multicasts will also

exhibit self-similarity. In order to confirm this fact, we

calculated the Hurst exponent H (0.5 < H ≤ 1) applying

the RS plot method [27] on the temporal information of the

full-system traces. In light of the results of Table III (GM

stands for Geometric Mean) and given that an H value close

to 1 denotes strong self-similarity, it can be concluded that

multicast traffic is self-similar and that burstiness increases

with the core count. The exponent is slightly higher in HT

or running SPLASH-2 applications. Note that the NoC will

have an impact upon the value of H , although similar results

are expected for most NoC implementations since burstiness

stems from memory effects inherent to the application level.

Spatiotemporal Correlation

Spatial and temporal analyses performed above yield two

independent characterizations of the injection process: first,

on the generic probability of any node transmitting and,

second, on the probability of any node transmitting shortly

Table III
HURST EXPONENTS

MESI HT
4 16 64 4 16 64

blackscholes .9628 .9497 .9473 .8394 .9640 .9853

bodytrack .9436 .9617 .9594 .9213 .9445 .9742

canneal .5856 .7876 .8636 .7152 .7892 .8367

facesim .8836 .959 .9488 .9175 .9225 .9301

ferret .8606 .8693 .9231 .9564 .9541 .9975

fluidanimate .9624 .9459 .9514 .9211 .9053 .9817

freqmine .7962 .9765 .9953 .8461 .9369 .9977

streamcluster .9764 .8526 .8317 .9835 .8355 .8121

swaptions .8812 .8638 .8983 .8832 .9376 .9375

vips .8586 .9331 .9583 .9169 .9842 .9747

x264 .7918 .8408 .9685 .8635 .9047 .9958

GM .8534 .9017 .9303 .8775 .9164 .9461

barnes .9914 .9828 .9701 .9285 .9463 .9671

cholesky .9325 .899 .9622 .9616 .9742 .9870

fft .9207 .8972 .9616 .9798 .9886 .9774

fmm .9782 .9684 .9655 .9393 .9565 .9754

lu .9584 .9354 .9524 .9384 .9689 .9583

ocean .8955 .8862 .9113 .8209 .9271 .8563

radiosity .9451 .888 .9662 .9616 .9638 .9762

radix .8744 .9551 .9595 .8671 .9194 .9201

water-spatial .9677 .9542 .9614 .8453 .9426 .9681

GM .9397 .9289 .9565 .9152 .9539 .9648

after any other node. The potential correlation between both

aspects could provide further insight on, for instance, how

easy is to determine that a given node X (not any node) will

transmit shortly after a transmission of another given node

Y. While correlation does not necessarily imply causality

between both transmissions (the message from Y may not

be triggered by the message from X), it is a highly valuable

information when designing predictive strategies for NoC.

For instance, take a NoC based upon arbitrated shared media

such as nanophotonic buses or a set of wireless channels:

arbitration will be much faster if nodes know in advance

who will transmit next.

To evaluate spatiotemporal correlation, we consider trans-

missions separated less than a given time period τ . If X =

Y , we found a potential source of autocorrelation; whereas

if X 6= Y , we are facing a case of crosscorrelation (note that

a transmission can be both auto- and crosscorrelated). The

choice of τ may depend on several factors and must capture

meaningful correlations. A value too low will not yield any

correlation, while a value too high will dilute meaningful

cases within high correlation probabilities. Two interesting

correlation metrics can be obtained from this analysis.

First, we evaluate the percentages of correlation multicast

transmissions. We obtain these values by marking the second

transmitter of a correlated pair and, at the end of the execu-

tion, counting the number of marked transmissions. Figure 6

shows the correlation distribution of multicast transmissions

assuming two different τ values. It is observed that the

percentage of crosscorrelated transmissions grows with the

number of cores, especially in the case of MESI, and that

autocorrelation levels are not significant in HT. Since a high



0

1

2

3

4

5

6

4 16 64

0.00

0.67

1.33

2.00

2.67

3.33

4.00

∆

0

0.5

1

1.5

2

2.5

3
MESI Coherence HT Coherence Averages

S
p

a
ti

a
l
D

is
tr

ib
u

ti
o

n
(C

o
V

)

Figure 5. Coefficient of Variation (CoV) of the spatial injection distribution of multicasts for 4/16/64-core systems assuming MESI and HT coherence.
Applications are sorted in descending order based on the difference ∆ between CoV(64) and CoV(4).

MESI HT

SPLASH-2 SPLASH-2PARSEC PARSEC

MESI HT

SPLASH-2 SPLASH-2PARSEC PARSEC

C
o

rr
e

la
te

d
M

u
lt

ic
a

s
ts

0%

2%

4%

6%

8%

10%

12%

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

Autocorrelation

Both

Crosscorrelation

0%

6%

12%

18%

24%

30%

36%

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

Figure 6. Percentage of correlated multicast transmissions assuming MESI
or HT coherence with τ set to 10 clock cycles (left) and 50 clock cycles
(right).

percentage of correlated traffic could imply not only subpar

NoC performance, but also a great opportunity to improve

it by means of predictive strategies, results suggest that

such mechanisms will gain importance as the number of

cores increases. Finally, it is observed that τ impacts upon

the percentage of correlated transmissions, but not much

upon its scalability with respect to multiprocessor size. In

future work, we aim to perform a sensitivity study of such

percentage when τ changes.

Another interesting aspect to investigate is the strength

of the crosscorrelation between any two pairs of nodes,

in an attempt to quantify the predictability of the source

of correlated transmissions. To this end, we define the

predictability of each node X as:

predX =
maxiNXi∑

i NXi

i 6= X, (1)

where NXY is the number of transmissions of Y corre-

lated to X. This metric captures how predictable are the

transmissions that happen shortly after a transmission by

X, since a low value means that crosscorrelation is spread

over a set of cores, therefore complicating the prediction

(0 if transmissions are not correlated). On the contrary, a

high value indicates a strong correlation with few cores

(1 if transmissions by X are always correlated with one

single core Y, X 6= Y). The factor of predictability between

any two pairs is calculated as the weighted average of the

predictability of each core:

MESI HT

Number of Cores

0.0%

1.5%

3.0%

4.5%

6.0%

7.5%

0%

15%

30%

45%

60%

75%

4 8 16 32 64 4 8 16 32 64

Predictability (left axis)

Crosscorrelation (right axis)

Number of Cores

0%

6%

12%

18%

24%

30%

0%

15%

30%

45%

60%

75%

4 8 16 32 64 4 8 16 32 64

Predictability (left axis)

Crosscorrelation (right axis)

MESI HT

Figure 7. Factor of predictability and percentage of crosscorrelaion
assuming MESI or HT coherence with τ set to 10 clock cycles (left) and
50 clock cycles (right).

pred =

∑
i6=X NXi

∑
i

∑
j 6=i Nij

predi =

∑
i maxj 6=i Nij∑
i

∑
j 6=i Nij

. (2)

Note that this metric is also an estimation of the probability

of correctly guessing the source of the next transmission with

static prediction and observing the current transmission.

Figure 7 shows the factor of predictability assuming two

different τ values. It is observed that the predictability de-

creases as the number of cores grows while, on the contrary,

the percentage of crosscorrelation increases substantially.

This supports the hypothesis that predictive strategies have

more potential in larger multiprocessors. The predictability

is much higher when MESI coherence is employed, probably

due to the clear dependence of multicast traffic with poten-

tially predictable memory sharing patterns in this case. In

HT, the sources of multicast traffic are more varied and the

use of more sophisticated predictors would be required. It is

also observed that increasing the observation window from

10 to 50 clock cycles makes the crosscorrelation levels rise,

yet it hardly affects the overall predictability. This analysis

could assist in the evaluation of the scope of a predictor, i.e.

which events to predict.

Phase Behavior

Apart from investigating self-similarity, trace-based anal-

ysis may allow the study of the different phases found in

the applications. Recent literature demonstrates not only

that such phases exist in applications running over shared-

memory multiprocessors, but also that the characteristics



0

2

4

M
u
l
t
i
c
a
s
t

I
n
t
e
n
s
i
t
y

[
m
s
g
/
K
c
y
c
l
e
]

0

2

4

S
p
a
t
i
a
l

D
i
s
t
r
i
b
u
t
i
o
n

[
C
o
V
]

0%

10%

20%

C
o
r
r
e
l
a
t
i
o
n

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

50%

100%

Time [sec]

P
r
e
d
i
c
t
a
b
i
l
i
t
y

VIPS (16−core)

Figure 8. Temporal evolution of different multicast characterization metrics
in a 16-core architecture with HT coherence running vips.

of these phases and the transitions between them are pre-

dictable [31], [35]. Phase changes affect a wide variety

of metrics [36], including communication intensity [25].

Multicast communication is likely to be also influenced by

the existence of phases within an application, and, therefore,

the metrics presented above could be evaluated on a per-

phase basis. The information can be used at compile-time or

run-time to assist processes that may use the aforementioned

metrics. For instance, a predictor used to improve NoC

performance can be reconfigured on each phase change to

increase its coverage or accuracy.

Rather than repeating all the analyses considering phase

behavior, here we exemplify the variation of different metrics

on a given case. Figure 8 plots the temporal evolution of

the multicast intensity, the spatial distribution, the level of

correlation and the factor of predictability of application vips

running in a 16-core architecture with HT coherence. Two

clear and differentiated sections are observed, the first one

with variable spatial imbalance from the beginning of the

execution until around 0.05 seconds, and the second one with

high spatial imbalance from that point onwards. A periodic

behavior is patent in both sections, alternating between silent

periods and phases with moderate multicast intensity. Peaks

of predictability suggest the use of predictive techniques in

specific parts of the execution.

The phase behavior shown here is general to most applica-

tions and can be in principle extrapolated to different multi-

processor sizes by taking into account that, since processing

work is generally distributed over the different threads, the

time spent within a given phase is inversely proportional to

the number of threads.

V. CONCLUSIONS

We presented a trace-based methodology for the analysis

of the scaling trends of multicast communication in mul-

tiprocessors. We then used it to characterize the multicast

traffic generated by the MESI and HT coherence protocols

for different multiprocessor sizes. The results point towards

an increase of the number of multicast messages and of

the number of destinations per message as the number of

cores grows. Further, multicast traffic becomes more spa-

tially imbalanced and shows increased temporal burstiness,

properties that generally degrade performance. These results

confirm the need for NoCs capable of efficiently dealing

with multicast messaging as we reach the manycore era and

set preliminary scalability requirements for such designs.

Fortunately, multicast sources show growing spatiotemporal

correlations that could be exploited towards achieving this

goal. In future work, our main aims will be to deeply analyze

the implications of phase behavior on the characteristics of

multicast traffic and to accurately model such traffic for

early-stage NoC design and evaluation purposes up to a

thousand cores.

ACKNOWLEDGMENT

The authors gratefully acknowledge support from INTEL

through the Doctoral Student Honor Program and from the

Comissionat per a Universitats i Recerca of the Catalan

Government (Ref. 2014SGR-1427).

REFERENCES

[1] D. A. B. Miller, “Device Requirements for Optical Intercon-
nects to Silicon Chips,” Proceedings of the IEEE, vol. 97,
no. 7, pp. 1166–85, 2009.

[2] R. Hesse, J. Nicholls, and N. E. Jerger, “Fine-Grained Band-
width Adaptivity in Networks-on-Chip Using Bidirectional
Channels,” in Proceedings of the NoCS ’12. Ieee, May 2012,
pp. 132–141.

[3] F. Sibai, “A Two Dimensional Low Diameter Scalable On-
Chip Network for Interconnecting Thousands of Cores,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23,
no. 2, pp. 193–201, 2011.

[4] R. Manevich, I. Cidon, and A. Kolodny, “Handling global
traffic in future CMP NoCs,” in Proceedings of the SLIP ’12,
2012, pp. 40–47.

[5] N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. G.
Dreslinski, D. Blaauw, and T. Mudge, “Scaling towards kilo-
core processors with asymmetric high-radix topologies,” in
Proceedings of the HPCA ’13. Ieee, Feb. 2013, pp. 496–
507.

[6] B. S. Feero and P. P. Pande, “Networks-on-Chip in a Three-
Dimensional Environment: A Performance Evaluation,” IEEE
Transactions on Computers, vol. 58, no. 1, pp. 32–45, Jan.
2009.

[7] E. Socher and M.-C. F. Chang, “Can RF Help CMOS
Processors?” IEEE Communications Magazine, vol. 45, no. 8,
pp. 104–111, Aug. 2007.



[8] R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-y. Wang, and
R. S. Williams, “Nanoelectronic and Nanophotonic Intercon-
nect,” Proceedings of the IEEE, vol. 96, no. 2, pp. 230–247,
Feb. 2008.

[9] S. Deb, A. Ganguly, P. P. Pande, B. Belzer, and D. Heo,
“Wireless NoC as Interconnection Backbone for Multicore
Chips: Promises and Challenges,” IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 2, no. 2, pp.
228–239, 2012.

[10] S. Abadal, E. Alarcón, M. C. Lemme, M. Nemirovsky, and
A. Cabellos-Aparicio, “Graphene-enabled Wireless Commu-
nication for Massive Multicore Architectures,” IEEE Commu-
nications Magazine, vol. 51, no. 11, pp. 137–143, 2013.

[11] N. E. Jerger, L.-S. Peh, and M. Lipasti, “Virtual Circuit
Tree Multicasting: A Case for On-Chip Hardware Multicast
Support,” in Proceedings of the ISCA-35. Ieee, Jun. 2008,
pp. 229–240.

[12] T. Krishna, L. Peh, B. Beckmann, and S. K. Reinhardt,
“Towards the ideal on-chip fabric for 1-to-many and many-to-
1 communication,” in Proceedings of the MICRO-44, vol. 2,
2011, pp. 71–82.

[13] T. Krishna and L.-S. Peh, “Single-Cycle Collective Commu-
nication Over A Shared Network Fabric,” in Proceedings of
the NoCS ’14, 2014.

[14] M. Martin, “Token Coherence: decoupling performance and
correctness,” in Proceedings of the ISCA-30, 2003, pp. 182–
193.

[15] P. Conway and B. Hughes, “The AMD Opteron Northbridge
Architecture,” IEEE Micro, vol. 27, no. 2, pp. 10–21, 2007.

[16] M. Palesi and M. Daneshtalab, Eds., Routing Algorithms in
Networks-on-Chip. Springer, 2014.

[17] S. Rodrigo, J. Flich, J. Duato, and M. Hummel, “Efficient
unicast and multicast support for CMPs,” in Proceedings of
MICRO-41. Ieee, Nov. 2008, pp. 364–375.

[18] G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel,
L. Kimerling, and A. Agarwal, “ATAC: A 1000-Core Cache-
Coherent Processor with On-Chip Optical Network,” in Pro-
ceedings of the PACT. ACM, 2010, pp. 477–488.

[19] M. Ebrahimi and M. Daneshtalab, “Path-Based Partitioning
Methods for 3D Networks-on-Chip with Minimal Adaptive
Routing,” IEEE Transactions on Computers, vol. 63, no. 3,
pp. 718–733, 2014.

[20] S. Abadal, R. Martı́nez, E. Alarcón, and A. Cabellos-
Aparicio, “Scalability-Oriented Multicast Traffic Character-
ization,” in Proceedings of NoCS ’14, 2014, pp. 180–181.

[21] S. Woo, M. Ohara, E. Torrie, and J. Singh, “The SPLASH-
2 programs: Characterization and methodological considera-
tions,” ACM SIGARCH Computer Architecture News, vol. 23,
no. 2, pp. 24–36, 1995.

[22] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC
benchmark suite: characterization and architectural implica-
tions,” in Proceedings of the PACT ’08, 2008, pp. 72–81.

[23] N. Barrow-Williams, C. Fensch, and S. Moore, “A communi-
cation characterisation of Splash-2 and Parsec,” in Proceed-
ings of the IISWC ’09, 2009, pp. 86–97.

[24] P. Gratz and S. Keckler, “Realistic workload characterization
and analysis for networks-on-chip design,” in Proceedings of
the CMP-MSI ’10, 2010.

[25] Y. Jin, E. Kim, and T. Pinkston, “Communication-Aware
Globally-Coordinated On-Chip Networks,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 23, no. 2, pp.
242–254, 2012.

[26] S. Volos, C. Seiculescu, B. Grot, N. K. Pour, B. Falsafi, and
G. De Micheli, “CCNoC: Specializing On-Chip Interconnects
for Energy Efficiency in Cache-Coherent Servers,” in Pro-
ceedings of the NoCS ’12. Ieee, May 2012, pp. 67–74.

[27] V. Soteriou, H. Wang, and L. Peh, “A Statistical Traffic Model
for On-Chip Interconnection Networks,” in Proceedings of the
MASCOTS ’06. Ieee, 2006, pp. 104–116.

[28] J. Bahn and N. Bagherzadeh, “A generic traffic model for on-
chip interconnection networks,” in Proceedings of the NoCArc
’08, 2008, pp. 22–29.

[29] W. Heirman and J. Dambre, “Rent’s rule and parallel pro-
grams: characterizing network traffic behavior,” in Proceed-
ings of the SLIP ’08, 2008, pp. 87–94.

[30] M. Lodde, J. Flich, and M. E. Acacio, “Heterogeneous NoC
Design for Efficient Broadcast-based Coherence Protocol
Support,” in Proceedings of the NoCS ’12. Ieee, May 2012,
pp. 59–66.

[31] Y. Zhang, B. Ozisikyilmaz, G. Memik, J. Kim, and A. Choud-
hary, “Analyzing the Impact of On-chip Network Traffic on
Program Phases for CMPs,” in Proceedings of the ISPASS
’09, 2009, pp. 218–226.

[32] P. Bogdan and R. Marculescu, “Non-stationary traffic analysis
and its implications on multicore platform design,” IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 30, no. 4, pp. 508–519, 2011.

[33] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, D. a. Wood, B. Beckmann, G. Black,
S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower,
and T. Krishna, “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, 2011.

[34] L. Kleinrock and F. Tobagi, “Packet Switching in Radio
Channels: Part I–Carrier Sense Multiple-Access Modes and
Their Throughput-Delay Characteristics,” IEEE Transactions
on Communications, vol. 23, no. 12, pp. 1400–1416, Dec.
1975.

[35] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder,
and C. Dulong, “Detecting phases in parallel applications on
shared memory architectures,” in Proceedings of the IPDPS
’06, 2006, pp. 88–100.

[36] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and
prediction,” ACM SIGARCH Computer Architecture News,
vol. 31, no. 2, pp. 336–349, 2003.


