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Abstract—Multisource energy harvesters are a promising,
robust alternative to power the future Internet of Nano Things
(IoNT), since the network elements can maintain their operation
regardless of the fact that one of its energy sources might be tem-
porarily unavailable. Interestingly, and less explored, when the
energy availability of the energy sources present large temporal
variations, combining multiple energy sources reduce the over-
all sparsity. As a result, the performance of a multiple energy
harvester powered device is significantly better compared to a
single energy source even if they harvest the same amount of
energy. In this context, a framework to model and characterize the
area for multiple source energy harvesting (EH) powered systems
is proposed. This framework takes advantage of this improve-
ment in performance to provide the optimal amount of energy
harvesters, the requirements of each energy harvester, and the
required energy buffer capacity, such that the overall area or vol-
ume is minimized. On top of these results, self-tunable energy
harvesters are explored as a solution and compared to multisource
EH platforms. As the results show, by conducting a joint design
of the energy harvesters and the energy buffer, the overall area or
volume of an EH powered device can be significantly reduced.

Index Terms—Area optimization, energy-erlang, energy
harvesting, multi-source harvesting, nanonetworks, self-tunable
harvesting.

I. INTRODUCTION

ANOTECHNOLOGY is providing a new set of tools to

the engineering community to integrate communicating
nanosensors. By means of communication, these nanosensors
will be able to achieve complex tasks in a distributed manner
[2]. The resulting nanonetworks will enable unique appli-
cations. For the time being, the communication options for
nanosystems are very limited due to large constraints that these
nanosensors face with regard to energy availability.

Recent advancements in electronics [2], [3] have pointed
out that energy harvesting (EH) is a firm candidate as the key
enabling technology in the development of nanonetworks with
perpetual character. These upcoming networks show unique
properties not only because of ultra-low power constraints but
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also because of the fact that the energy state is time varying.
That is, the energy buffer (e.g., a supercapacitor or a battery)
is constantly charging and discharging in a random manner
[4]. For this reason, one of the main challenges in the design
of such devices lies in the dimensioning of both the EH and
energy buffer units [4]. Considering both subsystem units to
be sufficiently large solves undesired interruptions during the
normal operation of the nanosensor and, accordingly, on the
nanonetwork. However, this comes at the cost of precluding
desirable miniaturization of the nanosensors, caused by the
relatively small power densities of existing ambient energy
sources and low energy density of energy buffers [5], [6]. As
an example, in order to harvest 0.2-mW vibrational energy and
to store 1 J of energy, an energy harvester of approximated
1 cm? and an energy buffer of approximated 2 cm? would be
required.

Recently, multisource energy harvesters are gaining inter-
est as a robust alternative to power wireless sensors [7]. To
implement multisource energy harvesters, there appear two fea-
sible approaches. On the one hand, these can be implemented
through platforms which combine a few number of energy har-
vesters, each devoted to each source of energy [7]-[9]. On the
other hand, self-tunable approaches permit tuning their oscil-
lating frequency, therefore enabling multiband capabilities to
harvest energy from multiple energy sources [10], [11].

These platforms are more robust than the single-source ones.
Indeed, if a certain energy source renders unavailable for a cer-
tain time period, due to the time asynchronicity among energy
sources, the sensor node can still maintain its normal operation.
An additional, but less explored, advantage of heterogeneous
multiple source energy harvesters, which aids the miniatur-
ization of the sensor nodes, is that when the ambient energy
presents large temporal variations (i.e., the harvested power
randomly varies over a wide range during time), the com-
bination of multiple statistically independent energy sources
lowers the sparsity of the overall energy which is harvested.
This causes that devices, which are powered by multisource
energy harvesters, show lower outage probabilities in contrast
to single-source configurations. Equivalently, the requirements
in terms of energy buffer capacity can be relaxed while main-
taining the same performance. As an example, Fig. 1 shows
three wireless motes that implement one, two, or four energy
harvesters, which occupy the same overall area in a chip-like
planar implementation.
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Fig. 1. Multisource EH enabled nano—micro interface. Increasing the num-
ber of sources reduces the efficient area for harvesting but maximizes the
probability of finding an active energy source.

In this paper, we present an analytical framework to model
the overall occupied area by the EH and energy buffer units.
In particular, this model accounts for the requirements and
capabilities of the wireless mote, and is useful to provide: 1) the
optimal number of energy harvesters; 2) their size; and 3) the
energy buffer capacity, such that the overall area of the wire-
less communicating device is minimized, while still meeting
the user-defined requirements of the communications unit. On
top of these results, we explore the capabilities of self-tunable
energy harvesters as a feasible alternative to multisource plat-
forms [10]. In this context, we evaluate their performance in
terms of harvested power and compare it to the performance of
multisource EH platforms.

To evaluate the provided model, we focalize on the design
of the nano—micro interface [12]. This network element stems
as the interface between the nanonetwork and the macroscale
network. As such, nano-micro interfaces show larger require-
ments in terms of computation and communications capabilities
and, therefore, these systems present larger power consumption
as well as overall size. Notice, however, that this model can
be scaled down to the size of a nanosensor, by assuming the
detailed constraints of such devices.

This framework shows that harvesting energy from multiple
sources by using either multisource platforms or self-tunable
energy harvesters provides significant improvements in ener-
getically sparse scenarios. These improvements, jointly con-
sidered with an optimal dimensioning of the energy buffer,
will pave the way to smaller energy management units and,
therefore, actual miniaturization of eventual nanonetworking
devices. This paper is structured as follows. In Section II-A, we
present the sparse energy sources. In Section III, we compare
the performance of single-source to multisource energy har-
vester powered devices. In Section IV, we present the circuit
area model to be optimized, while in Section V, we evalu-
ate this model in a particular case. In Section VI, we explore
the capabilities of self-tunable energy harvesters. Finally, in
Section VII, we conclude our work.

II. OVERVIEW

In this section, we overview the properties of the environ-
mental energy and define the metrics to evaluate the results of
this work.

A. Sparse Energy Sources

Ambient energy is generally generated by the aggregation of
an extensive number of physical entities which simultaneously

Harvested power

Fig. 2. Harvested power from a sparse ambient source of peak power to average
power ratio of (upper) C' = 8 and (lower) C' = 3.

radiate power [5]. Then, the random contribution of each entity,
in both magnitude and time duration, entails a time-varying
character in the aggregated power.

Accordingly, we refer to any physical phenomena which pro-
duces an aggregated power in a sparse, time-varying manner,
such that this power cannot be known or estimated and the mag-
nitude of the instantaneous power falls within a wide range, as a
sparse energy source. In fact, sparse energy sources are present
in a wide variety of physical phenomena. Among others, acous-
tic energy, mechanical, vibrational, or RF energy [13]-[15]
are considered representative examples of such sources, when
considering a large time scale.

In this work, we propose the peak power-to-average power
ratio as a metric to enable the comparison of performance of
ambient energy sources. This metric is given by

Ppcak

C= P

ey

where Pc.x is the average peak power and Py refers to the
average harvested power. Fig. 2 shows examples of two random
energy sources with different peak power to average power ratio
(C =8 and C' = 3). As it is shown, energy sources with large
peak power-to-average power ratios are characterized by short
but powerful bursts of energy, while leaving large inter-burst
times where the available energy is far below the average value.
On the contrary, energy sources with low values of this metric
are characterized by being more constant and predictable.

B. Evaluation Metrics

We use the energy utilization as a main metric to relate the
occupied area of an energy harvester, its harvestable power,
and the required performance of the nano—micro interface. The
energy utilization provides a link between the energy model,
the environmental harvested power, the network requirements,
and the energy buffer capacity. This is defined as

= Py 2

Pe
where Py is the harvested power and P stands for the required
power to perform a certain application. The energy utilization
is evaluated in the Energy—Erlang units [4].

Second, we use the energy outage probability p,,,; as a metric
to evaluate the performance of the nano—micro interface. The
energy outage is defined as the time interval during which the
device node does not have enough stored energy, and thus its
operation is temporarily interrupted.
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Fig. 3. Negative energy queue model.

III. MULTIPLE SOURCE ENERGY HARVESTERS

Multisource energy harvesters are able to combine the energy
from multiple energy sources. This reduces the chances that the
nano—micro interface is in a deep energy fading, where it is not
able to harvest energy for a significant amount of time, since
whenever an energy source is faded, any other energy source
can be supplying energy. In other words, combining inde-
pendent energy sources, the sparsity of the overall process is
reduced and thus the energy fadings are potentially reduced, as
well. In this section, we provide a model for multisource energy
harvester platforms and evaluate the improvement on perfor-
mance that using multiple EH platforms has when contrasted to
single harvester platforms.

A. Energy Model

In order to evaluate the performance, we use the negative
energy queue model [4], which is shown in Fig. 3. This Markov-
based model is similar to other existing energy models for EH
[16]-[19]. However, as it is shown, this model pursues to model
an EH powered nano—micro interface as a classical communi-
cations queue, i.e.: 1) the stability condition must be p, < 1;
2) the idle state is defined as the state of having an empty queue;
and 3) the loss of communication is assigned to a full queue.

This model considers that the arrivals of this queue are gen-
erated by the set of applications of the nano—micro interface
node, i.e., every time an application spends one unit of energy,
it generates an arrival of negative energy. Each kind of appli-
cation has an associated generation rate in power units (e.g.,
Ac for communications, Ap for processing, and Ag for sens-
ing). On the other hand, each harvester has an associated service
time, Ty = E/uy, which is the time that this EH unit needs
to process one negative energy packet, where F is the energy
of a negative energy packet and 1z the EH rate in power units.
We find that this time is characterized by a random variable
defined as

ty = time s.t./ Py (t)dt = Es. 3)
ty

Thus, the number N of negative energy states is related to
the energy buffer capacity C'p as

N = R )
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Additionally, if, at a certain time ¢, the queue has L; nega-
tive energy packets, then the energy state sy, at the energy buffer
is given by

s =Cp — LiEs. @)

This models brings significant benefits to model multisource
energy harvesters. In particular, the negative-energy queue
model is able to easily handle multiple energy harvesters, by
connecting them in parallel, such as a communication queue
with multiple servers (e.g., M/M/c/N, M/G/c/N, and G/G/c/N).

In order to exemplify this, if we assume a single-source
energy harvester, the outage probability can be easily calculated
by means of queue theory on M/G/1/N

pout:PNzl_ ! (6)
To + pE
where 7 refers to the probability that there are zero negative-
energy packets left within the queue right after the last negative-
energy packet was processed by the energy harvester. As such,
it is only required to estimate the probability of having a
depleted queue. In particular, 7 is found as a solution for

N-1 N-1
wnzzwjpjn, OgngN—landZﬂnzl @)
n=0 n=0

where equivalent to 7, 7, refers to the probability that there are
n negative-energy packets left and p;,, stands for the state tran-
sition probability of remaining negative-energy packets from
the state j to the state n, considering each state right after
a negative-energy packet has been processed by the energy
harvester.

B. Performance of a Multiple Source Energy Harvester

We focus on the nano—micro interface to evaluate the pro-
vided model. A nano—micro interface is expectedly larger than
the remaining nanosensors, since these must operate as a net-
work interface between the nanonetwork and the macroscale
environment. For these devices, we have considered an average
communications rate of A\, = Po = 100 uW. Then, we have
considered each negative energy packet to be of 10 pJ. Finally,
we have set the overall harvesting rate Nuy = Py = Po/p,
where p. has been set as an evaluation parameter. Therefore,
each harvester harvests an average power of Pc/p.N. These
EH rates can be achieved by means of vibrational harvesters [5].

In order to generate the sparse energy sources, we have
approximated the ambient energy by a random process gen-
erated by exponentially distributed energy bursts of power
Py C/N, with an inter-burst time of 0.1/C's. An exponentially
distributed random process has been chosen as it presents the
largest entropy, thus estimating the worst case [13].

Figs. 4 and 5 compare the improvement over p,,, that using
multiple harvesters has as a function of the energy buffer capac-
ity C'p for a peak power-to-average power ratio of C' = 10 and
C = 100, respectively. These results have been obtained by
assuming in the negative energy queue model p. = 0.9. As it
is shown, there is a clear improvement, since varying from one
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Fig. 4. Energy outage probability as a function of the energy buffer capacity.
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Fig. 5. Energy outage probability as a function of the energy buffer capacity.
pe = 0.9E2and C = 100.

to five harvesters, the energy buffer capacity can be reduced
from 30 to just 5 mJ and from 600 to just 100 mJ, while still
maintaining pe,, < 1073,

In addition to this, Figs. 6 and 7 compare this improvement
as a function of the p. for peak power-to-average power ratios
of C'=10 and C' = 100, respectively. In order to obtain these
results, the energy buffer capacity has been set to C'g = 10 mJ
in Fig. 6 and to Cp =100 mJ in Fig. 7. As it is shown,
multisource energy harvesters are able to provide similar per-
formance, but at larger p. values and, therefore, requiring
smaller EH area.

As a result, we observe that multisource energy harvesters
can help reducing both the energy buffer capacity and the EH
requirements, while still providing the required performance.

IV. CIRCUIT AREA MODEL

As seen in the previous section, additional energy harvesters
have a positive impact upon the performance. Nonetheless,
this technique produces a nonnegligible area overhead, since
each energy harvester requires some additional circuitry and
separation space.

An additional compromise is that low values of p. help
reducing the energy buffering capacity at the cost of propor-
tionally increasing the EH requirements.

These compromises motivate a framework for circuit area
optimization which considers the user-defined requirements,
the area overhead of multiple harvesters, and the energy buffer
capacity. In order to do so, we first relate the required power,
harvesting power, number of harvesters and energy buffer
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Fig. 6. Energy outage probability as a function of the energy utilization. Cg =
10 mJ and C' = 10.
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Fig. 7. Energy outage probability as a function of the energy utilization. Cg =
100 mJ and C' = 100.

capacity, which are able to achieve the required performance in
energy outage probability, through the energy model presented
in Section III. Afterward, this is translated into circuit area by
means of the following model.

We then define the overall area of the system as

Arorar = Ag + Ap+ Ay (8

where A refers to the area of the harvesting unit, Ap stands
for the area of the energy buffer unit, and A4 is the area of
the applications units (i.e., processing, sensing, and commu-
nications unit). In particular, since A4 is fixed and provided
by a certain application, A 4 is not considered in the following
circuit area optimization.

A. Area of the EH Unit

The area of the harvesting unit depends on mainly two fac-
tors, the number of energy harvesters and the power that these
aim to harvest. As shown in [5], the ambient power is generally
characterized by a given power density. As such, the over-
all area is expectedly proportional to the desired power to be
harvested. Alternatively, integrating more than one energy har-
vester requires additional circuitry, which increases the eventual
size of the unit. In this work, we linearly approximate the area
of the EH unit in terms of the number of energy harvesters and
desired power rate

Ay =Apo+ AunNu + AupPr/pe )

where Apq refers to a constant area, Ay to the partial con-
tribution of Ay with respect to the number Ny of energy
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TABLE I
VALUES USED IN THE OPTIMIZATION FRAMEWORK
Parameter Value Units
AHO 0.01 CIIl2
ANH .01 Cm2
Anp 6.66 | cm? mW—!
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Fig. 8. Overall area in terms of the energy utilization. C' = 10.

harvesters, and App to the partial contribution of Ay with
respect to the required power Py .

The considered values in this work are shown in Table I.
These correspond to reasonable values that have previously
been reported [5].

B. Area of the Energy Buffer

In line with recent advancements in energy buffering [6],
each technology presents an associated energy density. In this
context, we have considered consistent values for this density
of Dg =2 J/cm3 and a fixed height of 1 cm. Similar to A,
we may linearly approximate the overall area of the energy
buffer as

Ap = Apo+CpDp (10)
where Apg is a fixed area overhead and Cp is the required
capacity of the energy buffer in millijoules units.

V. EVALUATION OF THE AREA MODEL

In order to optimize the area, we have simulated the nano—
micro interface through the same energy model as described
in the previous sections. Then, we have assumed a tolera-
ble performance of a wireless device, when its energy outage
probability is below poy; = 1074,

Fig. 8 shows the overall occupied area for the joint EH and
energy buffer unit, such that the user-defined requirements in
terms of output power and energy outage probability are met.
This area corresponds assuming that the environmental energy
is characterized by a peak power-to-average power ratio of
C = 10. As it is shown, the overall area shows an optimal min-
imum for p, = 0.87 E2. This is due to the fact that for fixed
values of power requirements, a large energy utilization ratio
reduces the amount of harvested energy, therefore reducing the
size of the energy harvester. However, this reduction in the
energy harvester comes at the price of increasing the size of
the energy buffer.
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TABLE II
COMPONENT REQUIREMENTS

C ] Parameter | Value [ Units
10 Harvesters 4 —
Area harvester (total) 7.7 mm?
Py (each) 27.7 uw
Area energy buffer 3 mm?
Capacity energy buffer 15 mJ
100 Harvesters 5 —
Area harvester (total) 8.3 mm?
Py (each) 40 uw
Area energy buffer 5 mm?
Capacity energy buffer 25 mJ

Similarly, Fig. 9 shows the results of the circuit area opti-
mization when considering the same system requirements, but
assuming a peak power to average power of C' = 100. As it is
shown, an increase in this ratio enlarges the size of the overall
area, regardless of the number of energy harvesters and their
operation point. This increase is caused by the fact that the
nano—micro interface runs on the stored energy for a longer
time. In this case, it is found that increasing the number of
energy harvesters shows a significant benefit, since the spar-
sity of the energy is reduced. In particular, the minimum area
is found at a pp = 0.66 E2, considering five energy harvesters.
The outcomes of this design, which are required for the EH
unit and an energy buffer to minimize the area, can be found in
Table II for both cases.

VI. SELF-TUNABLE MULTIBAND ENERGY HARVESTERS

In case that the considered energy sources are of the same
type and the difference among them is that each is produced
at a different frequency band, self-tunable energy harvesters
emerge as an encouraging alternative to multisource platforms.
These devices have the property of tuning their oscillating fre-
quency over a wide range to adapt it to the frequency band of
the harvestable energy [10].

This technology aims to provide a much higher performance
compared to independent multisource platforms in cases where
the ambient energy is very sparse and the frequency bands are
uncorrelated to each other. In this case, a single energy har-
vester can generate more power than small energy harvesters.
However, this improvement compared to multisource platforms
is not always achieved because of two main reasons. On the one
hand, when the different bands generate power simultaneously,
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self-tunable energy harvesters can only tune one of the frequen-
cies, thus disregarding the other bands. On the other hand, a
similar concept to cognitive-radio communications [20], these
devices must implement spectrum sensing techniques to detect
which frequency band generates a larger amount of power,
therefore requiring power to generate power.

To exemplify this, consider the time diagram shown in
Fig. 10. In this figure, two Internet of nano things (IoNT)
platforms (one equipped with a multisource platform, and one
equipped with a self-tunable harvester) harvest power from
bands #1 and #2. We consider that both platforms integrate an
energy harvester of the same overall occupied area. Therefore,
the self-tunable energy harvester integrates a single energy har-
vester which can select the operating frequency band, whereas
the multisource energy harvester is divided by two energy har-
vesters, one for each frequency band. Then, we observe that
during the time 77, both energy sources generate power at
different times, whereas during 75, the energy sources simul-
taneously generate power. As a result, the self-tunable energy
harvester shows potential improvement during 77 since it can
harvest twice power, whereas the multisource platform scav-
enges more energy during 75 since both harvest the same
amount of power, while this does not require to spend power
in sensing the environment.

In this section, we provide a generic model for a self-tunable
energy harvester and compare their performance to multisource
approaches as a function of critical factors which affect their
performance.

A. Self-Tunable Energy Harvester

We show a generic model block diagram of a self-tunable
energy harvester in Fig. 11. This is composed of four subunits,

namely the broadband sensor, harvester, EH front-end, and
tuning circuit. As this figure shows, the harvester is the only
subunit which generates power, whereas the remaining units
require power to realize their operation. We define the net har-
vested power as the net contribution of power generated by the
harvester, broadband sensor, and tuning circuit

PH:T)PEH(t,B)—PB—PT (11)
where 7 stands for the efficiency of the EH front-end, Pgyr is
the power generated in the harvester subunit, which is tuned at
the band B, Pp refers to the required power from the broadband
sensor to operate, Pr stands for the power which is consumed
in the tuning circuit. As it follows, we briefly describe the
operation of each unit.

1) Harvester: The tunable energy harvester stems as the
key element in the EH unit. This is the only component that
generates energy by converting environmental energy into elec-
tric current. This component has tunable properties, i.e., its
oscillating frequency can be modified by adjusting its electri-
cal parameters. Providing that this component generates energy,
there is a direct relation between its occupied area and the
power that it is able to harvest. As such, it is desired that this
component occupies the largest area allocated for the EH unit.
The harvested power is given by

PEH(t,B) = (S(t) * }L(t,B)) Acﬁ' (12)
where S' is the spectral power density of the available energy
source, in power/area units, i(¢, B) stands for the transfer func-
tion of the harvester, which is tuned to the band B, and A.g
refers to the effective area of the harvester.

2) Broadband Sensor: In order to choose the optimal oscil-
lating frequency of the energy harvester, a broadband sensor
is integrated to detect most powerful band.These devices show
remarkable properties to detect oscillations at a significantly
wide frequency range. Unfortunately, they cannot be used as
energy harvesters. As it is shown in Fig. 11, this unit requires
a supply power to operate and to reports the sensed informa-
tion. The nano—micro interface must integrate spectrum sensing
tools to process this information to decide whether to retune
the harvester. The power consumed by this unit Pp is assumed
constant during the normal operation of the device.

3) Tuning Circuit: This circuit accommodates the natu-
ral frequency of the EH depending on the processed results
retrieved by the sensed data of the broadband sensor. The basic
element of this circuit is a capacitor. By selecting a capaci-
tor voltage V-, the natural frequency of the energy harvester
is tuned to a different frequency. Recent studies show approx-
imately linear dependency between the frequency and this
voltage [10]. As such, the tuned band B is selected according to

B =kfoVe (13)
where k is a given constant, fj is the center frequency of the
harvester, and V¢ refers to the capacitor voltage Providing
that the number of bands depends on the capacitor voltage,
switching to additional bands requires additional voltage lev-
els. Unfortunately, charging a capacitor to a higher voltage has
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ratio in self-tunable energy harvesters.

an associated quadratic loss of energy. Accordingly, the energy

required to switch from one band to another is given by
1 2

where AV refers to the difference between voltage levels.

4) EH Front-End: This unit is in charge of adapting the
power which is generated by the energy harvester to gener-
ate a dc current which is delivered to the energy buffer and
the remaining subsystem units of a nano—micro interface or a
nanosensor. As a result of this power-processing operation, the
actual power which is delivered to the device is always lower

than that produced by the energy harvester [4]. This is generally
referred to as the efficiency of the energy harvester.

B. Performance Evaluation

We evaluate the performance of a self-tunable energy har-
vester in terms of the average power which is able to generate.
For this, we consider the energy balance at the energy harvester
by calculating the generated power and the power losses derived
from sensing the spectrum and retuning the harvester.

To derive the generated power, we have assumed that a
self-tunable energy harvester occupies the same area as the opti-
mized case in multisource EH platforms and is able to generate
the same power. Alternatively, we have assumed that the power
that the energy harvester consumes to sense the spectrum, to
process this information and to tune the oscillating frequency of
the energy harvester, referred to as Pjss, quadratically depends
on the voltage range applied V¢ to an equivalent capacity of
Ceq =1 pF, which is a reasonable value as reported in [10].
The voltage applied at the capacitor linearly depends on the
number of frequency bands, as shown in (13).

Fig. 12 shows the harvested power as a function of the
peak power-to-average power ratio C' for different number of
available bands. In addition, we compare the results to the
multisource energy platform which has been optimized in the
previous section for C' = 10 with four energy harvesters. In
order to calculate these results, we have considered that the
voltage difference to tune between consecutive bands is 0.5 V.
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Fig. 13. Harvested power as a function of the capacitor voltage in self-tunable
energy harvesters.

As this figure shows, when the peak power-to-average power
ratio increases, the power of the energy sources is more com-
pacted in time. Then, the likelihood that two energy sources
are generating power at the same time is reduced. This per-
mits the energy harvester to maximize the harvestable energy,
thereby showing a better performance than multisource energy
harvesters. However, as this factor becomes large, the energy
devoted to perform spectrum sensing and tuning the oscillating
frequency gains significance, thus negatively impacting on the
performance of the energy harvester. In addition, it is observed
that the number of frequency bands plays an important role in
the performance of the energy harvester. In fact, considering
more energy bands improve the likelihood of a given band being
active, but significantly increases the power losses.

Then, Fig. 13 shows the harvested power as a function of
the applied voltage at the equivalent capacitor. In addition, we
compare the results to the multisource energy platform which
has been optimized in the previous section for C' = 10 with
four energy harvesters. To calculate these values, a peak power-
to-average power ratio of C' = 10 has been assumed. As it is
shown, the applied voltage has a very strong impact on the
performance of the energy harvester. In fact, as this voltage
approaches zero, increasing the number of bands can provide a
very large improvement compare to multisource EH platforms.
As an example, using a self-tunable energy harvester to har-
vest from four bands generates almost three times the energy
that an optimized multisource energy harvester with the same
number of bands. However, as the required capacitor voltage
increases, the performance of the energy harvester is being
affected, therefore, showing equal performance at a capaci-
tor voltage of approximately Vo = 0.65 V. This shows the
need of sophisticated sensing schemes to minimize the power
consumption.

Finally, we optimize the number of bands of a self-tunable
energy harvester as a function of the peak power-to-average
power ratio and capacitor voltage in Fig. 14. In addition,
this performance is compared to the performance of mul-
tisource EH platforms. As this figure shows, regardless of
the associated power losses of the EH unit, multisource EH
platforms outperform self-tunable harvesters, in terms of out-
age probabilities, for moderately low values of C. Then, as
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Fig. 14. Design space of self-tunable energy harvesters. Optimal number of
bands as a function of the capacitor voltage and peak power-to-average power
ratio.

this parameter increases, the effect of the capacitor voltage
becomes significant. In particular, it is observed that a less
number of bands show more robust performance in terms of
both studied parameters, whereas considering a large num-
ber of bands requires low capacitor voltages and large peak
power-to-average power ratios.

VII. CONCLUSION

Multisource EH is gaining popularity as an alternative to
power nanonetworks. The benefits that this alternative provides
when the ambient energy is largely time-variant is twofold:
on the one hand, it provides robustness to the sensors and
nano—micro interfaces, while on the other hand, the sparsity
of the overall contribution is reduced, and thus its operation
lifetime is improved. In this context, circuit area optimiza-
tion, which considers both energy harvester and energy buffer
and takes advantage of the improvement in performance of
multiple source energy harvesters, has been addressed. As it
has been shown, this joint effort can help reducing the over-
all area, thus enabling circuit area optimization to pursue a
future miniaturization of the communicating devices toward the
nanoscale. In addition, the performance of self-tunable energy
harvesters has been compared to an optimized multisource
energy harvester. Self-tunable harvesters have shown better per-
formance especially when the presented environmental energy
is very sparse. However, the operation of these devices requires
sensing and computing tasks to actively select the optimal
energy band.

REFERENCES

[1] R. Cid-Fuentes, A. Cabellos-Aparicio, and E. Alarcon, “Circuit area
optimization in energy temporal sparse scenarios for multiple harvester
powered systems,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Jun.
2014, pp. 2486-2489.

[2] Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, “Self-
powered system with wireless data transmission,” Nano Lett., vol. 11,
no. 6, pp. 2572-2577, 2011.

[3] J. Jornet and I. Akyildiz, “Joint energy harvesting and communication
analysis for perpetual wireless nanosensor networks in the terahertz
band,” IEEE Trans. Nanotechnol., vol. 11, no. 3, pp. 570-580, May 2012.

[4] R. Gomez Cid-Fuentes, A. Cabellos-Aparicio, and E. Alarcon,
“Energy buffer dimensioning through energy-erlangs in spatio-temporal-
correlated energy-harvesting-enabled wireless sensor networks,” /EEE J.
Emerg. Sel. Topics Circuits Syst., vol. 4, no. 3, pp. 301-312, Sep. 2014.

[5]1 S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes:
Survey and implications,” IEEE Commun. Surv. Tutorials, vol. 13, no. 3,
pp. 443-461, Third Quarter 2011.

[6] D. Pech et al., “Ultrahigh-power micrometre-sized supercapacitors based
on onion-like carbon,” Nat. Nano, vol. 5, no. 9, pp. 651-654, Sep. 2010.

[7]1 S.Bandyopadhyay and A. Chandrakasan, “Platform architecture for solar,
thermal, and vibration energy combining with MPPT and single induc-
tor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, Sep.
2012.

[8] C. Park and P. Chou, “Ambimax: Autonomous energy harvesting plat-
form for multi-supply wireless sensor nodes,” in Proc. 3rd Annu. IEEE
Commun. Soc. Sensor Ad Hoc Commun. Netw. (SECON), 2006, vol. 1,
pp. 168-177.

[9]1 A.S. Weddell, M. Magno, G. V. Merrett, D. Brunelli, B. M. Al-Hashimi,
and L. Benini, “A survey of multi-source energy harvesting systems,” in
Proc. Des. Autom. Test Eur. Conf. Exhib. (DATE), 2013, pp. 905-908.

[10] C. Eichhorn, R. Tchagsim, N. Wilhelm, and P. Woias, “A smart and self-
sufficient frequency tunable vibration energy harvester,” J. Micromech.
Microeng., vol. 21, no. 10, p. 104003, 2011.

[11] S. Jo, M. Kim, and Y. Kim, “Passive-self-tunable vibrational energy
harvester,” in Proc. Int. Solid-State Sens. Actuators Microsyst. Conf.
(TRANSDUCERS), Jun. 2011, pp. 691-694.

[12] 1. Akyildiz and J. Jornet, “The internet of nano-things,” IEEE Wireless
Commun., vol. 17, no. 6, pp. 58-63, Dec. 2010.

[13] M. Win, P. Pinto, and L. Shepp, “A mathematical theory of network inter-
ference and its applications,” Proc. IEEE, vol. 97, no. 2, pp. 205-230, Feb.
2009.

[14] S. Chalasani and J. Conrad, “A survey of energy harvesting sources for
embedded systems,” in Proc. IEEE Southeastcon, 2008, pp. 442-447.

[15] A. Hajati, S. Bathurst, H. Lee, and S. Kim, “Design and fabrication of a
nonlinear resonator for ultra wide-bandwidth energy harvesting applica-
tions,” in Proc. IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS), Jan.
2011, pp. 1301-1304.

[16] R. G. Cid-Fuentes, A. Cabellos, and E. Alarcon, “Energy harvesting
enabled wireless sensor networks: Energy model and battery dimension-
ing,” in Proc. 7th Int. Conf. Body Area Netw. (BODYNETS), Sep. 2012,
pp. 131-134.

[17] R.Rajesh, V. Sharma, and P. Viswanath, “Information capacity of energy
harvesting sensor nodes,” in Proc. IEEE Int. Symp. Inf. Theory, Jul.
31/Aug. 5, 2011, pp. 2363-2367.

[18] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener,
“Transmission with energy harvesting nodes in fading wireless channels:
Optimal policies,” J. Sel. Areas Commun., vol. 29, pp. 1732-1743, Sep.
2011.

[19] M. Gorlatova, A. Wallwater, and G. Zussman, “Networking low-power
energy harvesting devices: Measurements and algorithms,” in Proc. IEEE
INFOCOM, Apr. 2011, pp. 1602-1610.

[20] D. Cabric, A. Tkachenko, and R. Brodersen, “Spectrum sensing mea-
surements of pilot, energy, and collaborative detection,” in Proc. IEEE
Military Commun. Conf., Oct. 2006, pp. 1-7.

Raul Gomez Cid-Fuentes (GSM’12) received the
B.Sc. and M.Sc. degrees in telecommunications engi-
neering from the Universitat Politecnica de Catalunya
(UPC), Barcelona, Spain, both in 2011, and is cur-
rently working toward the Ph.D. degree in nanonet-

working at UPC.
He has been a Visiting Researcher with the
Geneys Laboratory, Northeastern  University,

Boston, MA, USA (2014), and with the Broadband
Wireless Networking Laboratory, Georgia Institute
of Technology, Atlanta, GA, USA. His research
interests include energy-harvesting enabled wireless networks, wireless RF
power transmission, and nanonetworks




26

Albert Cabellos-Aparicio received the B.Sc., M.Sc.,
and Ph.D. degrees in computer science engineer-
ing from the Technical University of Catalonia
(UPC), Barcelona, Spain, in 2001, 2005, and 2008,
respectively.

In September 2005, he became an Assistant
Professor with the Department of Computer
Architecture and as a Researcher with the Broadband
Communications Group. In 2010, he joined the
NaNoNetworking Center in Catalunya, UPC, where
he is the Scientific Director. He has been a Visiting
Researcher with Cisco Systems and Agilent Technologies and a Visiting
Professor with the Royal Institute of Technology (KTH), Stockholm, Sweden,
and the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
He founded the LISPmob open-source initiative along with Cisco. He has
participated in several national (Cicyt), EU (FP7), USA (NSF) and industrial
projects (Samsung and Cisco). He has given more than ten invited talks (MIT,
Cisco, INTEL, MIET, Northeastern Univ., etc.). He has coauthored more than
15 journal and 40 conference papers. His research interests include future
architectures for the Internet and nano-scale communications.

Dr. Cabellos-Aparicio is an Editor of the Elsevier Journal on Nano
Computer Network and founder of the ACM NANOCOM conference, the IEEE
MONACOM workshop and the N3Summit. He was the recipient of a full schol-
arship from UPC in 2004 to carry out his Ph.D. studies with the Department of
Computer Architecture.

IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 1, FEBRUARY 2016

Eduard Alarcén (S’96-M’01) received the M.Sc.
and Ph.D. degrees in electrical engineering from the
Technical University of Catalonia (UPC), Barcelona,
Spain, in 1995 and 2000, respectively.

He became an Associate Professor with UPC in
- 2001, and has been a Visiting Professor with the

P / University of Colorado at Boulder, Boulder, CO,
A \ / 7 USA (2003, 2006, and 2008) and with the Royal

\l § [ Institute of Technology (KTH), Stockholm, Sweden
e 4 ( 4 (2011). He has given 30 invited lecturers and tutorials
N ~ worldwide. He has coauthored more than 300 scien-
tific publications and 8 book chapters. He holds eight patents. He has been
involved in different national, EU, and US R&D projects. His research inter-
ests include the on-chip energy management circuits, energy harvesting and
wireless energy transfer, nanocommunications, and small satellites.

Dr. Alarcén is the Vice President of the IEEE CAS Society. He was elected a
member of the IEEE CAS Board of Governors (2010-2013) and was the IEEE
CAS Society Distinguished Lecturer. He is the Co-Editor of 6 journal special
issues, 8 conference special sessions, TPC Co-Chair and TPC member of 30
IEEE conferences, and Associate Editor for the IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, Journal on Emerging and
Selected Topics in Circuits and Systems, Journal on Low-Power Electronics,
and Nano Communication Networks. He was the recipient of the Best Paper
Award of the IEEE MWSCAS9S.



